Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 801–811 | Cite as

Closed-loop modeling of silicon nanophotonics from design to fabrication and back again

  • Wim BogaertsEmail author
  • Paul Bradt
  • Lieven Vanholme
  • Peter Bienstman
  • Roel Baets


We present a method for component-centric modeling of silicon nanophotonics, where a closed optimization loop allows to take the effects of the fabrication process into account during the design of nanophotonic components. This enables black-box component descriptions with functional parameters. Underlying mask layouts of the components can then automatically be optimized for their actual performance, and not just for their geometric layout. To simulate the effect of fabrication, we developed a projection lithography simulator which was included inside the optimization loop. This method was applied to the design of a 1-dimensional distributed Bragg mirror.


Modeling Nanophotonics Lithography Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bienstman P., Baets R.: Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33(4/5), 327 (2001)CrossRefGoogle Scholar
  2. Bienstman P., Vanholme L., Bogaerts W., Dumon P., Vandersteegen P.: Python in nanophotonics research. Comp. Science Eng. 9(3), 2801–2803 (2007)Google Scholar
  3. Bogaerts W., Wiaux V., Taillaert D., Beckx S., Luyssaert B., Bienstman P., Baets R.: Fabrication of photonic crystals in Silicon-on-insulator using 248-nm deep UV lithography. IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002)CrossRefGoogle Scholar
  4. Bogaerts W., Baets R., Dumon P., Wiaux V., Beckx S., Taillaert D., Luyssaert B., Campenhout J., Bienstman P., Thourhout D.: Nanophotonic waveguides in Silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23(1), 401–412 (2005)CrossRefADSGoogle Scholar
  5. Bogaerts W., Dumon P., Van Thourhout D., Taillaert D., Jaenen P., Wouters J., Beckx S., Wiaux V., Baets R.: Compact wavelength-selective functions in silicon-on-insulator photonic wires. J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006)CrossRefGoogle Scholar
  6. Dumon P., Priem G., Nunes L., Bogaerts W., Van Thourhout D., Bienstman P., Liang T., Tsuchiya M., Jaenen P., Beckx S., Wouters J., Baets R.: Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides. Jap. J. Appl. Phys. 45(8B), 6589–6602 (2006)CrossRefADSGoogle Scholar
  7. Fühner, T., Schnattinger, T., Ardelean, G., Erdmann, A.: Dr.litho: a development and research lithography simulator. SPIE Microlithogr. 6520, p. 65203F (2007)Google Scholar
  8. Gnan, M., Chong, H., Kim, C., Bryce, A., Sorel, M., De La Rue, R.: Coupled microcavity in photonic wire bragg grating. Lasers and Electro-Optics, 2004 (CLEO) Conference on 1:2 pp, San Fransico, CA (2004)Google Scholar
  9. Gnan M., Bellanca G., Chong H., Bassi P., Rue R.: Modelling of photonic wire Bragg gratings. Opt. Quantum Electron. 38(1–3), 133–148 (2006)CrossRefGoogle Scholar
  10. Kintner E.: Method for the calculation of partially coherent imagery. Appl. Opt. 17(17), 2747–2753 (1978)CrossRefADSGoogle Scholar
  11. Leijtens X., LeLourec P., Smit M.: S-matrix oriented CAD-tool for simulating complex integrated optical circuits. J. Sel. Top. Quantum Electron. 2(2), 257–262 (1996)CrossRefGoogle Scholar
  12. Levinson H.J.: Principles of Lithography. SPIE, Bellingham, Washington, USA (2001)Google Scholar
  13. Mack C.: Prolith—a comprehensive optical lithography Model. Proc. SPIE 538, 207–220 (1985)Google Scholar
  14. Mack C. : Field Guide to Optical Lithography. SPIE Press, Bellingham, Washington, USA (2006)Google Scholar
  15. Mendes R., Kennedy J., Neves J.: The fully informed particle swarm: Simpler, maybe better. IEEE Trans. Evol. Comp. 8(3), 204–210 (2004)CrossRefGoogle Scholar
  16. Selvaraja, S., Bogaerts, W., Van Thourhout, D., Baets, R.: Fabrication of uniform photonic devices using 193 nm optical lithography in silicon-on-insulator. Proc. ECIO, p. FrB3 (2008)Google Scholar
  17. Vlasov Y.A., McNab S.: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Wim Bogaerts
    • 1
    Email author
  • Paul Bradt
    • 1
  • Lieven Vanholme
    • 1
  • Peter Bienstman
    • 1
  • Roel Baets
    • 1
  1. 1.Department of Information TechnologyGhent University - IMECGentBelgium

Personalised recommendations