Advertisement

Optical and Quantum Electronics

, Volume 39, Issue 15, pp 1253–1272 | Cite as

Trends in microdisk laser research and linear optical modelling

  • Alexander I. NosichEmail author
  • Elena I. Smotrova
  • Svetlana V. Boriskina
  • Trevor M. Benson
  • Phillip Sewell
Article

Abstract

Research into microdisk lasers demonstrates new achievements both in the technology and in the associated physical effects and applications. Melting and rounding of the disk edge boosts the Q-factors due to improved surface smoothness. In-plane cavity shape is widely used as a design instrument. Optimal shaping of pumped area lowers the threshold power. Photonic molecules made of several microdisks as “photonic atoms” show lasing at several closely spaced frequencies. A microdisk with a single quantum dot as an active region is considered as the most promising system for realisation of a single photon emitter necessary for quantum computing. These new effects and devices can be simulated with accurate numerical techniques, developed recently for “warm-cavity” linear modelling, that are able to bring a new vision of the physics of lasing.

Keywords

Microcavity laser Active region Single quantum dot Photonic molecule Q-factor Linear threshold Integral equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apalkov, V.M., Raikh, M.E.: Directional emission from a microdisk resonator with a linear defect. Phys. Rev. B 70, 195317 (2004)ADSCrossRefGoogle Scholar
  2. Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.: Ultra-high-Q toroid microcavity on a chip. Nature 421, 905–908 (2003)ADSCrossRefGoogle Scholar
  3. Baba, T., Fujita, M., Kihara, M., Watanabe, R.: Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2–10 μm. IEEE Photonics Technol. Lett. 9(7), 878–890 (1997)CrossRefADSGoogle Scholar
  4. Bagnall, D.M., Ullrich, B., Sakai, H., Segawa, Y.: Microcavity lasing of optically excited CdS thin films at room temperature. J. Cryst. Growth 214–215, 1015–1018 (2000)CrossRefGoogle Scholar
  5. Bayer, M., Gutbrod, T., Reithmaier, J.P., Forchel, A., Reinecke, T.L. et al.: Optical modes in photonic molecules. Phys. Rev. Lett. 81(12), 2582–2585 (1998)ADSCrossRefGoogle Scholar
  6. Ben-Massaoud, T., Zyss, J.: Unidirectional laser emission from polymer-based spiral microdisks. Appl. Phys. Lett. 86, 241110 (2005)ADSCrossRefGoogle Scholar
  7. Bhattacharya, P., Sabarinathan, J., Topolancik, J., Chakravarty, S., Yu, P.-C., Zhou, W.: Quantum dot photonic crystal light sources. Proc. IEEE 93(10), 1825–1838 (2005)CrossRefGoogle Scholar
  8. Borcelli, M., Srinivasan, K., Barclay, P.E., Painter, O.: Rayleigh scattering, mode coupling, and optical loss in silicon microdisks. Appl. Phys. Lett. 85(17), 3693–3695 (2004)ADSCrossRefGoogle Scholar
  9. Borcelli, M., Johnson, T.J., Painter, O.: Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express 13(5), 515–1530 (2005)Google Scholar
  10. Boriskina, S.V.: Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules. Opt. Lett. 31(3), 338–340 (2006)ADSCrossRefGoogle Scholar
  11. Boriskina, S.V.: Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides. Opt. Express 15(25), 17371–17379 (2007)CrossRefADSGoogle Scholar
  12. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Effect of a layered environment on the complex natural frequencies of 2D WG-mode dielectric-ring resonators. IEEE/OSA J. Lightwave Technol. 20(8), 1563–1572 (2002)ADSCrossRefGoogle Scholar
  13. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Tuning of elliptic whispering-gallery-mode microdisk waveguide filters. IEEE/OSA J. Lightwave Technol. 21(9), 1987–1995 (2003)ADSCrossRefGoogle Scholar
  14. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Accurate simulation of 2-D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization. J. Opt. Soc. Am. A 21(3), 393–402 (2004a)ADSCrossRefGoogle Scholar
  15. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodical sidewall surface roughness. J. Opt. Soc. Am. B 21(10), 1792–1796 (2004b)ADSCrossRefGoogle Scholar
  16. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Optical modes in imperfect 2D square and triangular microcavities. IEEE J. Quantum Electron. 41(6), 857–862 (2005)ADSCrossRefGoogle Scholar
  17. Boriskina, S.V., Benson, T.M., Sewell, P., Nosich, A.I.: Q-factor and emission pattern control of the WG modes in notched microdisk resonators. IEEE J. Select. Top. Quantum Electron. 12(1), 66–70 (2006)CrossRefGoogle Scholar
  18. Byelobrov, V.O., Nosich, A.I.: Mathematical analysis of the lasing eigenvalue problem for the optical modes in a layered dielectric cavity with a quantum well and distributed Bragg reflectors. Opt. Quantum Electron. 39(10–11), 927–937 (2007)CrossRefGoogle Scholar
  19. Campenhout, J.V., Bienstman, P., Baets, R.: Band-edge lasing in gold-clad photonic-crystal membranes. IEEE J. Select. Areas Commun. 25, 1418–1423 (2005)CrossRefGoogle Scholar
  20. Cao, H., Xu, J.Y., Xiang, W.H., Ma, Y., Chang, S.-H., Ho, S.T., Solomon, G.S.: Optically pumped InAs quantum dot microdisk lasers. Appl. Phys. Lett 76, 3519–3521 (2000)ADSCrossRefGoogle Scholar
  21. Chern, G.D., Tureci, H.E., Stone, A.D., Chang, R.K., Kneissl, M., Johnson, N.M.: Unidirectional lasing from InGaN multiple-quantum-wells spiral-shaped micropillar. Appl. Phys. Lett. 83(9), 1710–1712 (2003)ADSCrossRefGoogle Scholar
  22. Choi, S.J., Peng, Z., Yang, Q., Choi, S.J., Dapkus, P.D.: Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides. IEEE Photonics Technol. Lett. 16(2), 356–358 (2004)CrossRefADSGoogle Scholar
  23. Chremmos, I.D., Uzunoglu, N.K.: Transmission and radiation in a slab waveguide coupled to a WG resonator: VIE analysis. J. Opt. Soc. Am. A 21(5), 839–846 (2004a)ADSCrossRefGoogle Scholar
  24. Chremmos, I.D., Uzunoglu, N.K.: Analysis of coupling between two slab waveguides in the presence of ring resonators. J. Opt. Soc. Am. A 21(2), 267–279 (2004b)ADSMathSciNetCrossRefGoogle Scholar
  25. Chu, S.-C., Otsuka, K.: Numerical study for selective excitation of Inge-Gaussian modes in end-pumped solid-state lasers. Opt. Express 15(25), 16506–16519 (2007)CrossRefADSGoogle Scholar
  26. Corbett, B., Justice, J., Considdine, L., Walsh, S., Kelly, W.M.: Low-threshold lasing in novel microdisk geometries. IEEE Photonics Technol. Lett. 8(7), 855–857 (2004)ADSCrossRefGoogle Scholar
  27. Dettmann C.P., Morozov G.V., Sieber M., Waalkens, H.: Directional emission from an optical microdisk resonator with a point scatterer. Europhys. Lett. 83 (2008)Google Scholar
  28. Djordjev, K., Choi, S.-J., Choi, S.-J., Dapkus, P.D.: High-Q vertically coupled InP microdisk resonators. IEEE Photonics Technol. Lett. 14(3), 331–333 (2002)CrossRefADSGoogle Scholar
  29. Evans, P.W., Holonyak, N.: Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings. Appl. Phys. Lett. 69(16), 2391–2393 (1996)ADSCrossRefGoogle Scholar
  30. Faist, J., Gmachl, C., Striccoli, M., Sirtori, C., Capasso, F.: Quantum cascade disk lasers. Appl. Phys. Lett. 69(17), 2456–2458 (1996)ADSCrossRefGoogle Scholar
  31. Fasching, G., Tamosiunas, V., Benz, A., Andrews, A.W., Unterrainer, K., Zobl, R., Roch, T., Schrenk, W., Strasser, G.: Subwavelength microdisk and microring terahertz quantum-cascade lasers. IEEE J. Quantum Electron. 43(8), 687–697 (2007)ADSCrossRefGoogle Scholar
  32. Frateschi, N.C., Levi, A.F.J.: The spectrum of microdisk lasers. J. Appl. Phys. 80(2), 644–653 (1996)ADSCrossRefGoogle Scholar
  33. Fujita, M., Baba, T.: Proposal and FDTD simulation of WG mode microgear cavity. IEEE. J Quantum Electron. 37(10), 1253–1258 (2001)ADSCrossRefGoogle Scholar
  34. Fujita, M., Baba, T.: Microgear laser. Appl. Phys. Lett. 80(12), 2051–2053 (2002)ADSCrossRefGoogle Scholar
  35. Fujita, M., Sakai, A., Baba, T.: Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers. IEEE J. Select. Top. Quantum Electron. 5(3), 673–681 (1999)CrossRefGoogle Scholar
  36. Fujita, M., Ushigome, R., Baba, T.: Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μm. Electron. Lett. 36, 9 (2000)CrossRefGoogle Scholar
  37. Fukushima, T., Shinohara, S., Harayama, T.: Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps. Opt. Express 15(25), 17392–17400 (2007)CrossRefADSGoogle Scholar
  38. Gayral, B., Gerard, J.M., Lemaitre, A., Dupuis, C., Mamin, L., Pelouard, J.L.: High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. 75, 1908–1910 (1999)ADSCrossRefGoogle Scholar
  39. Gerard, J.M., Gayral, B.: InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E 9, 131–139 (2001)ADSCrossRefGoogle Scholar
  40. Gianordoli, S., Hvozdara, L., Strasser, G., Schrenk, W., Faist, J., Gornik, E.: Long-wavelength (λ = 10μm) quadrupolar-shaped GaAs-AlGaAs microlasers. IEEE J. Quantum Electron. 36(4), 458–464 (2000)ADSCrossRefGoogle Scholar
  41. Gmachl, C., Cappasso, F., Narimanov, E.E., Nockel, J.U., Stone, A.D., Faist, J. et al.: High-power directional emission from microlasers with chaotic resonances. Science 280, 1556–1564 (1998)ADSCrossRefGoogle Scholar
  42. Gorodetsky, M.L., Savchenkov, A.A., Ilchenko, V.S.: Ultimate Q of optical microsphere resonators. Opt. Lett 21(7), 453–455 (1996)ADSCrossRefGoogle Scholar
  43. Gotzinger, S., Benson, O., Sandoghdar, V.: Towards controlled coupling between a high-Q WG mode and a single nanoparticle. Appl. Phys. B 73, 825–828 (2001)ADSCrossRefGoogle Scholar
  44. Hagness, S.G., Rafizadeh, D., Ho, S.T., Taflove, A.: FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and WG mode disk resonators. J. Lightwave Technol. 15(11), 2154–2165 (1997)ADSCrossRefGoogle Scholar
  45. Hammer, M.: Resonant coupling of dielectric optical waveguides via rectangular microcavities: the coupled guided mode perspective. Opt. Commun. 214, 155–170 (2002)ADSMathSciNetCrossRefGoogle Scholar
  46. Hovinen, M., Ding, J., Nurmikko, A.V., Grillo, D.C., Han, J. et al.: Blue-green laser emission from ZnSe quantum well microresonators. Appl. Phys. Lett. 63(23), 3128–3130 (1993)ADSCrossRefGoogle Scholar
  47. Huang, Y.-Z., Lu, Q.-Y., Guo, W.-H., Yu, L.-J.: Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries. Proc. IEE Optoelectron. 151(4), 202–204 (2004)CrossRefGoogle Scholar
  48. Ide, T., Baba, T., Tatebayashi, J., Iwatomo, S., Nakaoka, T., Arakawa, Y.: Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. Opt. Express 13(5), 1615–1620 (2005)ADSCrossRefGoogle Scholar
  49. Ilchenko, V.S., Gorodetsky, M.L., Yao, X.S., Maleki, L.: Microtorus: a high-finesse microcavity with whispering-gallery modes. Opt. Lett. 26(5), 256–258 (2001)ADSCrossRefGoogle Scholar
  50. Jebali, A., Mahrt, R.F., Moll, N., Bauer, C., Bona, G.L., Bachtold, W.: Lasing in organic circular grating structures. J. Appl. Phys. 96(6), 3043–3049 (2004)ADSCrossRefGoogle Scholar
  51. Jebali, A., Erni, D., Gulde, S., Mahrt, R.F., Bachtold, W.: In-plane coupling into circular-grating resonators for all-optical switching. Proc. Int. Conf. Transparent Opt. Networks (ICTON-06), Nottingham 1, 88–91 (2006)Google Scholar
  52. Jebali, A., Erni, D., Gulde, S., Mahrt, R.F., Bachtold, W.: Analytical calculation of the Q-factor for circular-grating microcavities. J. Opt. Soc. Am. B 24(4), 906–915 (2007)ADSCrossRefGoogle Scholar
  53. Kaliteevski, M.A., Abram, R.A., Nikolaev, V.V.: Optical eigenmodes of a cylindrical microcavity. J. Mod. Opt. 47, 677–684 (2000)ADSGoogle Scholar
  54. Kalkman, J, Tchebotareva, A., Polman, A., Kippenberg, T.J., Min, B., Vahala, K.J.: Fabrication and characterization of erbium-doped toroidal microcavity lasers. J. Appl. Phys. 99, 083103 (2006)ADSCrossRefGoogle Scholar
  55. Kerker, M.: Resonances in electromagnetic scattering by objects with negative absorption. Appl. Opt. 18(8), 1180–1189 (1979)ADSGoogle Scholar
  56. Kim, O. S., Meincke, P., Breinbjerg, O., Jorgensen, E.: Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions. Radio Sci. 39, 5003 (2004a)ADSGoogle Scholar
  57. Kim, S.-K., Kim, S.-H., Kim, G.-H., Park, H.-G., Shin, D.-J., Lee, Y.-H.: Highly directional emission from few-micron-size elliptical microdisks. Appl. Phys. Lett. 84(6), 861–863 (2004b)ADSCrossRefGoogle Scholar
  58. Kippenberg, T.J., Spillane, S.M., Armani, D.K., Vahala, K.J.: Fabrication and coupling to planar high-Q silica disk microcavities. Appl. Phys. Lett. 83(4), 797–799 (2003)ADSCrossRefGoogle Scholar
  59. Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett. 85(25), 6113–6115 (2004)ADSCrossRefGoogle Scholar
  60. Klunder, D.J.W., Krioukov, E., Tan, F.S., Van Der Veen, T., Bulthuis, H.F., Sengo, G., Otto, C., Hoekstra, H.J.W.M., Driessen, A.: Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology. Appl. Phys. B 73(5–6), 603–608 (2001)ADSGoogle Scholar
  61. Kneissl, M., Teepe, M., Miyashita, N., Johnson, N.M., Chern, G.D., Chang, R.K.: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. Appl. Phys. Lett. 84(14), 2485–2487 (2004)ADSCrossRefGoogle Scholar
  62. Kottmann, J.P., Martin, O.J.F.: Accurate solution of the volume integral equation for high-permittivity scatterers. IEEE Trans. Antennas Propagat. 48(11), 1719–1726 (2000)ADSCrossRefGoogle Scholar
  63. Kurdoglyan, M.S., Lee, S.-Y., Rim, S., Kim, C.-M.: Unidirectional lasing from a microcavity with a rounded isosceles triangle shape. Opt. Lett. 29(23), 2758–2760 (2004)ADSCrossRefGoogle Scholar
  64. Labilloy, A., Benisty, H., Weisbuch, C., Krauss, T.F., Smith, C.J.M., Hourdre, R., Oesterle, U.: High-finesse disk microcavity based on a circular Bragg reflector. Appl. Phys. Lett. 73, 1314–1316 (1998)ADSCrossRefGoogle Scholar
  65. Lee, S.-Y., Kurdoglyan, M.S., Rim, S., Kim, C.-M.: Resonance patterns in a stadium-shaped microcavity. Phys. Rev. A 70, 023809 (2004)ADSCrossRefGoogle Scholar
  66. Lester, M., Arias-Gonzalez, J.R., Nieto-Vesperinas, M.: Fundamental and model of photonic-force microscopy. Opt. Lett. 26, 707–709 (2001)ADSCrossRefGoogle Scholar
  67. Levi, A.F.J., Slusher, R.E., McCall, S.L., Glass, J.L., Peaton, S.J., Logan, R.A.: Directional light coupling from microdisk lasers. Appl. Phys. Lett. 62(6), 561–563 (1993)ADSCrossRefGoogle Scholar
  68. Li, B.-J., Liu, P.-L.: Numerical analysis of the WG modes by the FDTD method. IEEE J. Quantum Electron. 32(9), 1583–1587 (1996)ADSCrossRefGoogle Scholar
  69. Ling, T., Liu, L., Song, Q., Xu, L., Wang, W.: Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity. Opt. Lett. 28, 1724–1726 (2003)CrossRefGoogle Scholar
  70. Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., Ippen, E.: Vertically coupled glass microring resonator channel dropping filters. IEEE Photonics Technol. Lett. 11(2), 215–217 (1999)CrossRefADSGoogle Scholar
  71. Liu, X., Fang, W., Huang, Y., Wu, X.H., Ho, S.T., Cao, H., Chang, R.P.H.: Optically pumped ultraviolet microdisk laser on a silicon substrate. Appl. Phys. Lett. 84(14), 2488–2490 (2004)ADSCrossRefGoogle Scholar
  72. Manolatou, C., Rana, F.: Subwavelength nanopatch cavities for semiconductor plasmon lasers. IEEE J. Quantum Electron. 44(5), 435–447 (2008)ADSCrossRefGoogle Scholar
  73. Marcuse, D.: Light Transmission Optics, ser. Computer Science and Engineering Series. Van Nostrand Reinhold, New York (1982)Google Scholar
  74. Matsko, A.B., Ilchenko, V.S.: Optical resonators with whispering-gallery modes, Pt. 1, Basics and Pt. 2, Applications. IEEE J. Select. Top. Quantum Electron. 12(1), 3–32 (2006)CrossRefGoogle Scholar
  75. McCall, S.L., Levi, A.F.J., Slusher, R.E., Pearson, S.J., Logan, R.A.: Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60(3), 289–29 (1992)ADSCrossRefGoogle Scholar
  76. Michler, P., Kiraz, A., Zhang, L., Becher, C., Hu, E., Imamoglu, A.: Laser emission from quantum dots in microdisk structures. Appl. Phys. Lett. 77(2), 184–186 (2000)ADSCrossRefGoogle Scholar
  77. Mohideen, U., Hobson, W.S., Pearton, S.J., Ren, F., Slusher, R.E.: GaAs/AlGaAs microdisk lasers. Appl. Phys. Lett. 64(15), 1911–1913 (1994)ADSCrossRefGoogle Scholar
  78. Morand, A., Phan-Huy, K., Desieres, Y., Benech, P.: Analytical study of the microdisk’ resonant modes coupling with a waveguide based on the perturbation theory. J. Lightwave Technol. 22(3), 827–832 (2004)ADSCrossRefGoogle Scholar
  79. Nakagawa, A., Ishii, S., Baba, T.: Photonic molecule laser composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112 (2005)ADSCrossRefGoogle Scholar
  80. Nobis, T., Grundmann, M.: Low-order optical WG modes in hexagonal nanocavities. Phys. Rev. A 72, 063806 (2005)ADSCrossRefGoogle Scholar
  81. Noble, M.J., Loehr, J.P., Lott, J.A.: Analysis of microcavity VCSEL lasing modes using a full-vector weighted index method. IEEE J. Quantum Electron. 34, 1890–1903 (1998)ADSCrossRefGoogle Scholar
  82. Noeckel, J.U., Chang, R.K.: 2-D microcavities: theory and experiments. In: van Zee, R.D., Looney, J.P. (eds) Cavity-Enhanced Spectroscopies, Academic Press, San Diego (2002)Google Scholar
  83. Noeckel, J.U., Stone, A.D.: Chaotic light: a theory of asymmetric resonant cavities. In: Chang, R.K., Campillo, A.J. (eds) Optical Processes in Microcavities, pp. 389–426. World Scientific, Singapore (1996)Google Scholar
  84. Nosich, A.I.: MAR in the wave-scattering and eigenvalue problems: foundations and review of solutions. IEEE Antennas Propagat. Magaz. 41(3), 34–49 (1999)ADSCrossRefGoogle Scholar
  85. Nosich, A.I., Smotrova, E.I., Boriskina, S.V., Benson, T., Sewell, P.: Chaos-free mathematical framework for linear optical modeling of microcavities and microlasers. Proc. Int. Conf. Transp. Opt. Netw. (ICTON-06), Nottingham 1, 53–58 (2006)Google Scholar
  86. Pelton, M., Yamamoto, Y.: Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys. Rev. A 59(3), 2418–2421 (1999)ADSCrossRefGoogle Scholar
  87. Piprek, J. (eds): Optoelectronic Devices: Advanced Simulation and Analysis. Springer, Berlin (2005)Google Scholar
  88. Polman, A., Min, B., Kalkman, J., Kippenberg, T.J., Vahala, K.J.: Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Appl. Phys. Lett. 64(7), 1037–1039 (2004)ADSCrossRefGoogle Scholar
  89. Rex, N.B., Chang, R.K., Guido, L.J.: Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping. IEEE Photonics Technol. Lett. 13(1), 1–3 (2001)CrossRefADSGoogle Scholar
  90. Ripoll, J., Soukoulis, C.M., Economou, E.N.: Optimal tuning of lasing modes through collective particle resonance. J. Opt. Soc. Am. B 21(1), 141–149 (2004)ADSCrossRefGoogle Scholar
  91. Rogobete, L., Henkel, C.: Spontaneous emission in a subwavelength environment characterized by boundary integral equations. Phys. Rev. A 70, 063815 (2004)ADSCrossRefGoogle Scholar
  92. Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86, 414–439 (1990)zbMATHADSMathSciNetCrossRefGoogle Scholar
  93. Scheuer, J., Yariv, A.: Annular Bragg defect mode resonators. J. Opt. Soc. Am. B 20(11), 2285–2291 (2003)ADSCrossRefGoogle Scholar
  94. Scheuer, J., Green, W.M.J., DeRose, G.A., Yariv, A.: Low-threshold 2-D annular Bragg lasers. Opt. Lett. 29(22), 2241–2243 (2004)CrossRefGoogle Scholar
  95. Scheuer, J., Green, W.M.J., DeRose, G.A., Yariv, A.: Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Appl. Phys. Lett. 86, 251101 (2005a)ADSCrossRefGoogle Scholar
  96. Scheuer, J., Green, W.M.J., DeRose, G.A., Yariv, A.: InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE J. Select. Top. Quantum Electron. 11(2), 476–484 (2005b)CrossRefGoogle Scholar
  97. Schwefel, H.G.L., Rex, N.B., Tureci, H.E., Chang, R.K., Stone, A.D., Ben-Messaoud, T., Zyss, J.: Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B 21(5), 923–934 (2004a)ADSCrossRefGoogle Scholar
  98. Schwefel, H.G.L., Tureci, H.E., Stone, A.D., Chang, R.K.: Progress in asymmetric resonant cavities; using shape as a design parameter in dielectric microcavity lasers. In: Vahala, K. (eds) Optical Microcavities, pp. 415–496. World Scientific, Singapore (2004b)Google Scholar
  99. Shopova, S.I., Farca, G., Rosenberger, A.T., Wickramanayake, W.M.S., Kotov, N.A.: Microsphere WG mode laser using HgTe quantum dots. Appl. Phys. Lett. 85(25), 6101–6103 (2004)ADSCrossRefGoogle Scholar
  100. Smotrova, E.I., Nosich, A.I.: Mathematical analysis of the lasing eigenvalue problem for the WG modes in a 2-D circular microcavity. Opt. Quantum Electron. 36(1–3), 213–221 (2004)CrossRefGoogle Scholar
  101. Smotrova, E.I., Nosich, A.I., Benson, T.M., Sewell, P.: Cold-cavity thresholds of microdisks with uniform and non-uniform gain. IEEE J. Select. Top. Quantum Electron. 11(5), 1135–1142 (2005a)CrossRefGoogle Scholar
  102. Smotrova E.I., Nosich A.I., Benson T.M., Sewell, P.: Selectively activated photonic molecule of two microdisks: cold-cavity lasing spectra and thresholds. Proc. Int. Conf. Transparent Optical Networks (ICTON-05), Barcelona, pp. 139–142, (2005b)Google Scholar
  103. Smotrova, E.I., Nosich, A.I., Benson, T., Sewell, P.: Optical coupling of the whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Select. Top. Quantum Electron. 12(1), 78–85 (2006a)CrossRefGoogle Scholar
  104. Smotrova, E.I., Nosich, A.I., Benson, T.M., Sewell, P.: Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes. Opt. Lett. 31(7), 921–923 (2006b)ADSCrossRefGoogle Scholar
  105. Smotrova, E.I, Nosich, A.I., Benson, T., Sewell, P.: Ultralow lasing thresholds of the π-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes. IEEE Photonics Technol. Lett. 18(19), 1993–1995 (2006c)CrossRefADSGoogle Scholar
  106. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71(1), 1–10 (2005)CrossRefGoogle Scholar
  107. Srinivasan, K., Borcelli, M., Johnson, T.J., Barclay, P.E., Painter, O.: Optical loss and lasing characteristics of high-Q-factor AlGaAs microdisk resonators with embedded quantum dots. Appl. Phys. Lett. 86, 151106 (2005)ADSCrossRefGoogle Scholar
  108. Streiff, M., Witzig, A., Pfeiffer, M., Royo, P., Fichtner, W.: A comprehensive VCSEL device simulator. IEEE J. Select. Top. Quantum Electron. 9(3), 879–891 (2003)CrossRefGoogle Scholar
  109. Sun, X., Scheuer, J, Yariv, A.: Optimal design and reduced threshold in vertically emitting circular Bragg disk resonator lasers. IEEE J. Select. Top. Quantum Electron. 13, 359–366 (2007)CrossRefGoogle Scholar
  110. Tishinin, D.V., Dapkus, P.D., Bond, A.E., Kim, I., Lin, C.K., O’Brien, J.: Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding. IEEE Photonics Technol. Lett. 11(8), 1003–1005 (1999)CrossRefADSGoogle Scholar
  111. Tureci, H.E., Stone, A.D.: Mode competition and output power in regular and chaotic dielectric cavity lasers. Proc. SPIE 5708, 255–270 (2005)ADSCrossRefGoogle Scholar
  112. Tureci, H.E., Schwefel, H.G.L., Stone, A.D., Narimanov, E.E.: Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric microcavities. Opt. Express 10(6), 752–776 (2002)ADSGoogle Scholar
  113. Vahala, K.J.: Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  114. Vlasov A.G., Skliarov, O.P.: An electromagnetic boundary value problem for a radiating dielectric cylinder with reflectors at both ends. Radio Eng. Electron. Phys. 22, 17–23, (1977). Translation from Radiotekhnika i Elektronika 22, 21–28 (1977)Google Scholar
  115. Wiersig, J.: Boundary element method for resonances in dielectric microcavities. J. Opt. A, Pure Appl. Opt. 5, 53–60 (2003a)ADSCrossRefGoogle Scholar
  116. Wiersig, J.: Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 67, 023807 (2003b)ADSCrossRefGoogle Scholar
  117. Wiersig, J.: Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett 97, 253901 (2006)ADSCrossRefGoogle Scholar
  118. Wilton, D.: Review of current status and trends in the use of integral equations in computational electromagnetics. Electromagnetics 12, 287–341 (1992)CrossRefGoogle Scholar
  119. Yang, L., Vahala, K.J.: Gain functionalization of silica microresonators. Opt. Lett. 28(8), 592–594 (2003)ADSCrossRefGoogle Scholar
  120. Yang, Y.-D., Huang, Y.-Z., Chen, Q.: High-Q TM whispering-gallery modes in 3-D microcylinders. Phys. Rev. A 75, 013817 (2007)ADSCrossRefGoogle Scholar
  121. Zeng, K.C., Dai, L., Lin, J.Y., Jiang, H.X.: Optical resonance modes in InGaN/GaN multiple-quantum-well microring cavities. Appl. Phys. Lett. 75(17), 2563–2565 (1999)ADSCrossRefGoogle Scholar
  122. Zhang, J., Grischkowsky, D.: WG mode cavity for terahertz pulses. J. Opt. Soc. Am. B 20(9), 1894–1904 (2003)ADSCrossRefGoogle Scholar
  123. Zhang, L., Hu, E.: Lasing from InGaAs quantum dots in an injection microdisk. Appl. Phys. Lett. 82(3), 319–321 (2003)ADSCrossRefGoogle Scholar
  124. Zhang, J.P., Chu, D.Y., Wu, S.L., Bi, W.G., Tiberio, R.C., Tu, C.W., Ho, S.T.: Directional output from photonic-wire microcavity semiconductor lasers. IEEE Photonics Technol. Lett. 8(8), 968–970 (1996)ADSCrossRefGoogle Scholar
  125. Zhuck, N.P., Yarovoy, A.G.: 2-D scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization. IEEE Trans. Antennas Propagat. 42(1), 16–21 (1994)ADSCrossRefGoogle Scholar
  126. Zwiller, V., Falth, S., Persson, J., Seifert, W., Samuelson, L., Bjork, G.: Fabrication and time-resolved studies of visible microdisk lasers. J. Appl. Phys. 93(4), 2307–2309 (2003a)ADSCrossRefGoogle Scholar
  127. Zwiller, V., Falth, S., Bjork, M.T., Seifert, W., Samuelson, L., Bjork, G.: Controlled coupling of selected quantum dots with high-Q microdisk microcavities, arXiv:cond-mat/0305068v1, 05.05 (2003b)Google Scholar
  128. Zwiller, V., Aichele, T., Benson, O.: Quantum optics with single quantum dot devices. New J. Phys. 6, 96 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Alexander I. Nosich
    • 1
    Email author
  • Elena I. Smotrova
    • 1
  • Svetlana V. Boriskina
    • 2
  • Trevor M. Benson
    • 3
  • Phillip Sewell
    • 3
  1. 1.Department of Computational ElectromagneticsInstitute of Radio-Physics and Electronics NASUKharkivUkraine
  2. 2.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA
  3. 3.George Green Institute for Electromagnetics ResearchUniversity of NottinghamNottinghamUK

Personalised recommendations