Advertisement

Optical and Quantum Electronics

, Volume 39, Issue 14, pp 1191–1206 | Cite as

Logic gates based in two- and three-modes nonlinear optical fiber couplers

  • J. W. M. Menezes
  • W. B. de Fraga
  • A. C. Ferreira
  • K. D. A. Saboia
  • A. F. G. F. Filho
  • G. F. Guimarães
  • J. R. R. Sousa
  • H. H. B. Rocha
  • A. S. B. SombraEmail author
Article

Abstract

In this paper we did a study of logic gates obtained in the operation of a three-core non linear directional coupler (TNLDC) and an asymmetric two-core coupler (DNLDC) operating in the CW regime (the laser signals have the same wavelength). The symmetric three-core coupler (TNLDC), with their cores identical, in a planar arrangement, was studied using a control pulse applied to the first core. The second structure is an asymmetric two-core coupler (DNLDC). Looking at the transmission characteristics of the device, through the direct and cross channel, we did a study of the extinction ratio (Xratio) of these devices. For both devices we did a numerical investigation with the objective to implement logic gates. The DNLDC supplied AND, OR and XOR gates while the TNLDC supplied AND, NAND, OR, XOR and NOT gates. In comparing the performance of both switches operating as logic gates (DNLDC and TNLDC) we define, for the first time, a figure-of-merit of the logic gates (FOMELG). In this criteria the FOMELG is defined as a function of the extinction ratio of the gate outputs. Comparing the same gates of the three and two-core NLDC we observe that the logical gates of the three-core TNLDC present a better performance than the one of the two-core DNLDC considering the figure of merit FOMELG, besides the fact that is simpler to fabricate a symmetrical coupler (with identical cores) comparing with an asymmetric coupler. We believe that the use of this figure of merit will be useful in the study of the performance of logic gates to be used in communication systems.

Keywords

Logic gates Optical waveguide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P. (2001). Nonlinear Fiber Optics, 3rd edn. Academic Press, New York. ISBN 0 12 045143 3 Google Scholar
  2. Akhmediev N. and Ankiewicz A. (1993). Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 70: 2395–2398 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. Akhmediev, N.N., Ankiewicz, A.: Solitons—Non-Linear Pulses and Beams, 1st edn. Optical and Quantum Electronics Series, 5. Chapman & Hall, London (1997). ISBN 0 412 75450 9Google Scholar
  4. Akhmediev N. and Soto-Crespo J.M. (1994). Propagation dynamics of ultrashort pulses in nonlinear fiber couplers. Phys. Rev. E 49: 4519–4529 CrossRefADSGoogle Scholar
  5. Atai J. and Malomed B.A. (2003). Stability and interactions of solitons in asymmetric dual core-optical waveguides. Opt. Commun. 221: 55–62 ADSGoogle Scholar
  6. Betts R.A., Tjugiarto T., Xue Y.L. and Chu P.L. (1991). Nonlinear refractive index in erbium doped optical fiber. IEEE J. Quantum Electron. 27: 908–913 CrossRefADSGoogle Scholar
  7. Boling N.I., Glass A.J. and Owyoung A. (1978). Empirical relationship for predicting nonlinear refractive index changes in optical solids. IEEE J. Quantum Electron. QE-14: 601–610 CrossRefADSGoogle Scholar
  8. Buah P.A., Rahman B.M.A. and Grattan K.T.V. (1997). Numerical study of soliton switching in active three-core nonlinear fiber couplers. IEEE J. Quantum Electron. 33: 874–878 CrossRefADSGoogle Scholar
  9. Castro F.M., Molina M.I. and Deering W.D. (2003). Controling all-optical in multicore nonlinear couplers. Opt. Commun. 226: 199–204 CrossRefADSGoogle Scholar
  10. Chen Y., Snyder A.W. and Payne D.N. (1992). Twin core nonlinear couplers with gain and loss. IEEE J. Quantum Electron. 28: 239–245 CrossRefADSGoogle Scholar
  11. Chiang K.S. (1997a). Propagation of short optical pulses in directional couplers with Kerr nonlinearity. J. Opt. Soc. Am. B 14: 1437–1443 CrossRefADSGoogle Scholar
  12. Chiang K.S. (1997b). Coupled-mode equations for pulse switching in parallel waveguides. IEEE J. Quantum Electron. 33: 950–954 CrossRefADSGoogle Scholar
  13. Chu P.L., Malomed B.A. and Peng G.D. (1993). switching and propagation in nonlinear fiber couplers: analytical results. J. Opt. Soc. Am. B 10: 1379–1385 ADSCrossRefGoogle Scholar
  14. Chu P.L., Kivshar Y.S., Malomed B.A., Peng G.D. and Quiroga-Teixeiro M.L. (1995). Soliton controlling, switching, and splitting in nonlinear fused-fiber couplers. J. Opt. Soc. Am. B 12: 898–904 ADSGoogle Scholar
  15. Da Silva M.G. and Sombra A.S.B. (1998). All-optical soliton switching in three-core nonlinear fiber couplers. Opt. Commun. 145: 281–290 CrossRefADSGoogle Scholar
  16. Deering W.D., Molina M.I. and Tsironis G.P. (1993). Directional couplers with linear and nonlinear elements. Appl. Phys. Lett. 62(20): 2471–2473 CrossRefADSGoogle Scholar
  17. Donnelly J.P., DeMeo N.L. Jr and Ferrante G.A. (1983). Three-guide optical couplers in GaAs. IEEE J. Lightwave Technol. LT-1(2): 417–424 ADSGoogle Scholar
  18. Fraga W.B., Menezes J.W.M., da Silva M.G., Sobrinho C.S. and Sombra A.S.B. (2006). All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262(1): 32–37 CrossRefADSGoogle Scholar
  19. Friberg S.R. and Smith P.W. (1987). Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. QE-23: 2089–2094 CrossRefADSGoogle Scholar
  20. Friberg S.R., Weiner A.M., Silberberg Y., Sfez B.G. and Smith P.S. (1988). Femtosecond switching in a dual-core-fiber nonlinear coupler. Opt. Lett. 13: 904–906 ADSGoogle Scholar
  21. Griffin R., Love J.D., Lyons P.R.A., Thorncraft D.A. and Rashleigh S.C. (1991). Asymmetric multimode couplers. IEEE J. Lightwave Technol. 9(11): 1508–1517 CrossRefADSGoogle Scholar
  22. Jensen S.M. (1982). The nonlinear coherent coupler. IEEE J. Quantum Electron. QE-18: 1580–1583 CrossRefADSGoogle Scholar
  23. Kaup D.K., Lakoba T.I. and Malomed B.A. (1997). Asymmetric solitons in mismatched dual-core optical fibers. J. Opt. Soc. Am. B 14: 1199–1206 CrossRefADSGoogle Scholar
  24. Kitayama K. and Wang S. (1983). Optical pulse compression by nonlinear coupling. Appl. Phys. Lett. 43: 17–23 CrossRefADSGoogle Scholar
  25. Kivshar Y.S. (1993). Self-localization in arrays of defocusing waveguides. Opt. Lett. 18: 1147–1158 ADSGoogle Scholar
  26. Lines M.E. (1991). Oxide glasses for fast photonic switching: a comparative study. J. Appl. Phys. 69: 6876–6884 CrossRefADSGoogle Scholar
  27. Lopez, F.A., Cabrera, J.M., Rueda, F.A.: Electrooptics Phenomena, Materials and Applications, 1st edn. Academic Press (1994). ISBN 0 12 044512 3Google Scholar
  28. Mak W.C.K., Malomed B.A. and Chu P.L. (1998). Solitary waves in asymmetric coupled waveguides with quadratic nonlinearity. Opt. Commun. 154: 145–151 CrossRefADSGoogle Scholar
  29. Malomed B.A., Skinner I.M., Chu P.L. and Peng G.D. (1996). Symmetric and asymmetric solitons in twin core nonlinear optical fibers. Phys. Rev. E 53: 4084–4091 CrossRefADSGoogle Scholar
  30. Nobrega K.Z. and Sombra A.S.B. (1998). Optimum self phase modulation profile for nonlinear transmission recovery in twin core optical couplers with loss. Opt. Commun. 151: 31–34 CrossRefADSGoogle Scholar
  31. Ramos P.M. and Paiva C.R. (1999). All-optical pulse switching in twin-core fiber couplers with intermodal dispersion. IEEE J. Quantum Electron. 35: 983–989 CrossRefADSGoogle Scholar
  32. Shum P., Chiang K.S. and Gambling W.A. (1999). Switching dynamics of short optical pulses in a nonlinear directional coupler. IEEE J. Quantum Electron. 35: 79–83 CrossRefADSGoogle Scholar
  33. Smith, P.W.: Applications of all-optical switching and logic. In: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 313, no. 1525. Optical Bistability, Dynamical Nonlinearity and Photonic Logic, pp. 349–355 (1984)Google Scholar
  34. Sombra A.S.B. (1992). Bistable pulse collisions of the cubic-quintic nonlinear Schrödinger equation. Opt. Commun. 94: 92–98 CrossRefADSGoogle Scholar
  35. Stegeman G.I. and Wright E.M. (1990). All-optical waveguide switching. Opt. Quantum Electron. 22: 95–122 CrossRefGoogle Scholar
  36. Trillo S., Wabnitz S., Wright E.M. and Stegeman G.I. (1988). Soliton switching in fiber nonlinear directional couplers. Opt. Lett. 13: 672–677 ADSGoogle Scholar
  37. Trivunac-Vukovic N. (2001). Realization of all-optical ultrafast logic gates using triple core asymmetric nonlinear directional coupler. J. Opt. Commun. 22(2): 59–63 Google Scholar
  38. Trivunac-Vukovic, N., Milovanovic, B.: Realization of full set logic gates for all-optical ultrafast switching. In: IEEE, Telsiks 2001, pp. 500–503 (2001)Google Scholar
  39. Valkering T.P., De Boer P.T. and Hockstra H.J.W.M. (1998). Soliton dynamics in directional couplers. Physica D 123: 223–234 zbMATHCrossRefADSGoogle Scholar
  40. Valkering T.P., Van Honschoten J. and Hockstra H.J.W.M. (1999). Ultra-sharp soliton switching in a directional coupler. Opt. Commun. 159: 215–220 CrossRefADSGoogle Scholar
  41. Wang Y. and Liu J. (1999). All-fiber logical devices based on the nonlinear directional coupler. IEEE Photonics Technol. Lett. 11: 72–74 CrossRefADSGoogle Scholar
  42. Weiner A.M., Silberberg Y., Fouckhardt H., Leaird D.E., Saifi M.A., Andrejco M.J. and Smith P.W. (1989). Use of femtosecond square pulses to avoid pulse breakup in all-optical switching. IEEE J. Quantum Electron. 25: 2648–2655 CrossRefADSGoogle Scholar
  43. Yang C.C. (1991). All-optical ultrafast logic gates that use asymmetric nonlinear directional couplers. Opt. Lett. 16: 1641–1643 ADSGoogle Scholar
  44. Yang C.C. and Wang A.J.S. (1992). Asymmetric nonlinear coupling and its applications to logic functions. IEEE JQE 28: 479–487 CrossRefGoogle Scholar
  45. Zang D.Y. and Forest S.R. (1992). Crystalline organic semiconductor optical directional couplers and switches using and index matching layer. IEEE Photonics Technol. Lett. 4: 365–368 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • J. W. M. Menezes
    • 1
  • W. B. de Fraga
    • 1
  • A. C. Ferreira
    • 1
    • 2
  • K. D. A. Saboia
    • 1
  • A. F. G. F. Filho
    • 1
    • 2
  • G. F. Guimarães
    • 1
    • 2
  • J. R. R. Sousa
    • 1
  • H. H. B. Rocha
    • 1
    • 2
  • A. S. B. Sombra
    • 1
    Email author
  1. 1.Laboratório de Telecomunicações e Ciência e Engenharia de Materiais LOCEM, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Engenharia de Teleinformática (DETI), Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations