Optical and Quantum Electronics

, Volume 40, Issue 2–4, pp 83–95 | Cite as

Novel photonic applications of nonlinear semiconductor laser dynamics

Article

Abstract

With a proper perturbation, even a single-mode semiconductor laser can exhibit highly complex dynamical characteristics ranging from stable, narrow-linewidth oscillation to broadband chaos. In recent years, three approaches to invoke complex nonlinear dynamical states in a single-mode semiconductor laser have been thoroughly studied: optical injection, optical feedback, and optoelectronic feedback. In each case, the nonlinear dynamics of the semiconductor laser depends on five intrinsic laser parameters and three operational parameters. The dynamical state of a given laser can be precisely controlled by properly adjusting the three operational parameters. This ability to control the dynamical behavior of a laser, combined with the understanding of its characteristics, opens up the opportunity for a wide range of novel applications. This paper illustrates the utilization of the rich nonlinear dynamics of single-mode semiconductor lasers by focusing on the period-one oscillation for its applications in tunable photonic microwave generation, AM-to-FM conversion, and dual-frequency precision Doppler lidar.

Keywords

Semiconductor lasers Optical injection Nonlinear dynamics Microwave photonics Lidar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arecchi, F.T., Lippi, G.L., Puccioni, G.P., Tredicce, J.R.: Deterministic chaos in laser with injected signal. Opt. Commun. 51, 308–314 (1984)CrossRefADSGoogle Scholar
  2. Basov, N.G.: Dynamics of injection lasers. IEEE J. Quant. Electron. 4, 855–864 (1968)CrossRefADSGoogle Scholar
  3. Bortnik, B., Hung, Y.C., Tazawa, H., Seo, B.J., Luo, J.D., Jen, A.K.Y., Steier, W.H., Fetterman, H.R.: Electrooptic polymer ring resonator modulation up to 165 GHz. IEEE J. Select. Topics Quant. Electron. 13, 104–110 (2007)CrossRefGoogle Scholar
  4. Braun, R.P., Grosskopf, G., Meschenmoser, R., Rohde, D., Schmidt, F., Villino, G.: Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking. Electron. Lett. 33, 1395–1396 (1997)CrossRefGoogle Scholar
  5. Broom, R.F., Mohn, E., Risch, C., Salathe, R.: Microwave self-modulation of a diode laser coupled to an external cavity. IEEE J. Quant. Electron. 6, 328–334 (1970)CrossRefADSGoogle Scholar
  6. Chan, S.C., Liu, J.M.: Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics. IEEE J. Select. Topics Quant. Electron. 10, 1025–1032 (2004)CrossRefGoogle Scholar
  7. Chen, H.F., Liu, J.M.: Complete phase and amplitude synchronization of broadband chaotic optical fields generated by semiconductor lasers subject to optical injection. Phys. Rev. E. 71, 046216 (2005a)CrossRefADSGoogle Scholar
  8. Chan, S.C., Liu, J.M.: Microwave frequency division and multiplication using an optically injected semiconductor laser. IEEE J. Quant. Electron. 41, 1142–1147 (2005b)CrossRefADSGoogle Scholar
  9. Chan, S.C., Liu, J.M.: Frequency modulation on single-sideband using controlled dynamics of an optically injected semiconductor laser. IEEE J. Quant. Electron. 42, 699–705 (2006)CrossRefADSGoogle Scholar
  10. Chan, S.C., Hwang, S.K., Liu, J.M.: Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser. Opt. Lett. 31, 2254–2256 (2006)CrossRefADSGoogle Scholar
  11. Chan, S.C., Hwang, S.K., Liu, J.M.: Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express. 15, 14921–14935 (2007a)CrossRefADSGoogle Scholar
  12. Chan, S.C., Hwang, S.K., Liu, J.M.: Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state. SPIE. 6468, 646811 (2007b)CrossRefGoogle Scholar
  13. Chlouverakis, K.E., Adams, M.J.: Temperature sensitivity of injection-locked vertical-cavity surface-emitting lasers. IEEE J. Quant. Electron. 40, 189–196 (2004)CrossRefADSGoogle Scholar
  14. DeJagher, P.C., van der Graaf, W.A., Lenstra, D.: Relaxation-oscillation phenomena in an injection-locked semiconductor laser. Quant. Semiclass. Opt. 8, 805–822 (1996)CrossRefADSGoogle Scholar
  15. Diaz, R., Chan, S.C., Liu, J.M.: Lidar detection using a dual-frequency source. Opt. Lett. 31, 3600–3602 (2006)CrossRefADSGoogle Scholar
  16. Eriksson, S.: Dependence of the experimental stability diagram of an optically injected semiconductor laser on the laser current. Opt. Commun. 210, 343–353 (2002)CrossRefADSGoogle Scholar
  17. Gavrielides, A., Kovanis, V., Erneux, T.: Analytical stability boundaries for a semiconductor laser subject to optical injection. Opt. Commun. 136, 253–256 (1997a)CrossRefADSGoogle Scholar
  18. Gavrielides, A., Erneux, T., Kovanis, V., Alsing, P.M., Simpson, T.B.: Subharmonic transition in an optically injected semiconductor laser: theory and experiments. Quant. Semiclass. Opt. 9, 575–585 (1997b)CrossRefADSGoogle Scholar
  19. Gavrielides, A., Kovanis, V., Nizette, M., Erneux, T., Simpson, T.B.: Period three limit-cycles in injected semiconductor lasers. Quant. Semiclass. Opt. 4, 20–26 (2002)CrossRefGoogle Scholar
  20. Hwang, S.K., Liu, J.M.: Dynamical characteristics of an optically injected semiconductor laser. Opt. Commun. 183, 195–205 (2000)CrossRefADSGoogle Scholar
  21. Hwang, S.K., Liu, J.M., White, J.K.: 35 GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking. IEEE Photon. Technol. Lett. 16, 972–974 (2004)CrossRefADSGoogle Scholar
  22. Johansson, L.A., Seeds, A.J.: Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop. J. Lightwave Technol. 21, 511–520 (2003)CrossRefADSGoogle Scholar
  23. Kobayashi, S., Kimura, T.: Injection locking in AlGaAs semiconductor laser. IEEE J. Quant. Electron. 17, 681–689 (1981)CrossRefADSGoogle Scholar
  24. Krauskopf, B., Lenstra, D. (eds.): Nonlinear laser dynamics: concepts, mathematics, physics, and applications. American Institute of Physics (2000)Google Scholar
  25. Krauskopf, B., Tollenaar, N., Lenstra, D.: Tori and their bifurcations in an optically injected semiconductor laser. Opt. Commun. 156, 158–169 (1998)CrossRefADSGoogle Scholar
  26. Landais, P., Lynch, S.A., O’Gorman, J., Fischer, I., Elsäßer, W.: Self-pulsation dynamics in narrow stripe semiconductor lasers. IEEE J. Quant. Electron. 42, 381–388 (2006)CrossRefADSGoogle Scholar
  27. Lang, R.: Injection locking properties of a semiconductor laser. IEEE J. Quant. Electron. 18, 976–983 (1982)CrossRefADSGoogle Scholar
  28. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quant. Electron. 16, 347–355 (1980)CrossRefADSGoogle Scholar
  29. Lin, F.Y., Liu, J.M.: Diverse waveform generation using semiconductor lasers for radar and microwave applications. IEEE J. Quant. Electron. 40, 682–689 (2004a)CrossRefADSMathSciNetGoogle Scholar
  30. Lin, F.Y., Liu, J.M.: Chaotic radar using nonlinear laser dynamics. IEEE J. Quant. Electron. 40, 815–820 (2004b)CrossRefADSGoogle Scholar
  31. Lin, F.Y., Liu, J.M.: Chaotic lidar. IEEE J. Select. Topics Quant. Electron. 10, 991–997 (2004c)CrossRefGoogle Scholar
  32. Liu, J.M., Simpson, T.B.: Four-wave mixing and optical modulation in a semiconductor laser. IEEE J. Quant. Electron. 30, 957–965 (1994)CrossRefADSGoogle Scholar
  33. Liu, J.M., Chen, H.F., Tang, S.: Optical-communication systems based on chaos in semiconductor lasers. IEEE Trans. Circuits Syst. I. 48, 1475–1483 (2001)CrossRefGoogle Scholar
  34. Liu, J.M., Chen, H.F., Tang, S.: Synchronized chaotic optical communications at high bit rates. IEEE J. Quant. Electron. 38, 1184–1196 (2002)CrossRefADSGoogle Scholar
  35. Liu, J.M., Chen, H.F., Tang, S.: Dynamics and synchronization of semiconductor lasers for chaotic optical communications, pp. 285–340. Springer, Digital Communications Using Chaos and Nonlinear Dynamics (2006)Google Scholar
  36. Mogensen, F., Olesen, H., Jacobsen, G.: Locking conditions and stability properties for a semiconductor laser with external light injection. IEEE J. Quant. Electron. 21, 784–793 (1985)CrossRefADSGoogle Scholar
  37. Morvan, L., Lai, N.D., Dolfi, D., Huignard, J.P., Brunel, M., Bretenaker, F., Le Floch, A.: Building blocks for a two-frequency laser lidar-radar: a preliminary study. Appl. Opt. 41, 5702–5712 (2002)CrossRefADSGoogle Scholar
  38. Murakami, A., Shore, K.A.: Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators. Phys. Rev. A. 73, 043804 (2006)CrossRefADSGoogle Scholar
  39. Novak, D., Ahmed, Z., Waterhouse, R.B., Tucker, R.S.: Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links. IEEE Trans. Microwave Theory Tech. 43, 2257–2262 (1995)CrossRefGoogle Scholar
  40. Okajima, Y., Hwang, S.K., Liu, J.M.: Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection. Opt. Commun. 219, 357–364 (2003)CrossRefADSGoogle Scholar
  41. Petitbon, I., Gallion, P., Debarge, G., Chabran, C.: Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser. IEEE J. Quant. Electron. 24, 148–154 (1988)CrossRefADSGoogle Scholar
  42. Pajarola, S., Guekos, G., Nizzola, P., Kawaguchi, H.: Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding. IEEE Trans. Microwave Theory Tech. 47, 1234–1240 (1999)CrossRefGoogle Scholar
  43. Ramos, R.T., Gallion, P., Erasme, D., Seeds, A.J., Bordonalli, A.: Optical injection locking and phase-lock loop combined systems. Opt. Lett. 19, 4–6 (1994)ADSGoogle Scholar
  44. Rubiola, E., Salik, E., Huang, S., Yu, N., Maleki, L.: Photonic-delay technique for phase-noise measurement of microwave oscillators. J. Opt. Soc. Am. B. 22, 987–997 (2005)CrossRefADSGoogle Scholar
  45. Spano, P., Tamburrini, M., Piazzolla, S.: Optical FSK modulation using injection-locked laser diodes. J. Lightwave Technol. 7, 726–728 (1989)CrossRefADSGoogle Scholar
  46. Simpson, T.B.: Phase-locked microwave-frequency modulations in optically-injected laser diodes. Opt. Commun. 170, 93–98 (1999)CrossRefADSGoogle Scholar
  47. Simpson, T.B., Doft, F.: Double-locked laser diode for microwave photonics applications. IEEE Photon. Technol. Lett. 11, 1476–1478 (1999)CrossRefADSGoogle Scholar
  48. Simpson, T.B., Liu, J.M.: Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers. J. Appl. Phys. 73, 2587–2589 (1993)CrossRefADSGoogle Scholar
  49. Simpson, T.B., Liu, J.M.: Enhanced modulation bandwidth in injection-locked semiconductor lasers. IEEE Photon. Technol. Lett. 9, 1322–1324 (1997)CrossRefADSGoogle Scholar
  50. Simpson, T.B., Liu, J.M., Huang, K.F., Tai, K.: Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quant. Semiclass. Opt. 9, 765–784 (1997)CrossRefADSGoogle Scholar
  51. Tredicce, J.R., Arecchi, F.T., Lippi, G.L., Puccioni, G.P.: Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B. 2, 173–183 (1985)ADSCrossRefGoogle Scholar
  52. van der Graaf, W.A., Levine, A.M., Lenstra, D.: Diode lasers locked to noisy injection. IEEE J. Quant. Electron. 33, 434–442 (1997)CrossRefADSGoogle Scholar
  53. Wieczorek, S., Krauskopf, B., Lenstra, D.: A unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt. Commun. 172, 279–295 (1999)CrossRefADSGoogle Scholar
  54. Wieczorek, S., Simpson, T.B., Krauskopf, B., Lenstra, D.: Global quantitative predictions of complex laser dynamics. Phys. Rev. E. 65, 045207R (2002)CrossRefADSMathSciNetGoogle Scholar
  55. Yabre, G., de Waardt, H., van den Boom, H.P.A., Khoe, G.D.: Noise characteristics of single-mode semiconductor lasers under external light injection. IEEE J. Quant. Electron. 36, 385–393 (2000)CrossRefADSGoogle Scholar
  56. Yao, X.S., Maleki, L.: Optoelectronic microwave oscillator. J. Opt. Soc. Am. B. 13, 1725–1735 (1996)ADSGoogle Scholar
  57. Yao, X.S., Maleki, L.: Dual microwave and optical oscillator. Opt. Lett. 22, 1867–1869 (1997)CrossRefADSGoogle Scholar
  58. Yao, X.S., Davis, L., Maleki, L.: Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightwave Technol. 18, 73–78 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations