Optical and Quantum Electronics

, Volume 39, Issue 12–13, pp 1057–1069

Microstructured fibers with highly nonlinear materials

  • Kay Schuster
  • Jens Kobelke
  • Stephan Grimm
  • Anka Schwuchow
  • Johannes Kirchhof
  • Hartmut Bartelt
  • Andreas Gebhardt
  • Philippe Leproux
  • Vincent Couderc
  • Waclaw Urbanczyk
Article

Abstract

We investigated the effect of modification of silica with high concentrations of germanium up to 36 mol% as well as with highly polarizable dopants (e.g., barium and lanthanum) on optical behavior of microstructured fibers. The goal was to investigate the influence of doping on several properties like fiber attenuation, supercontinuum generation and birefringence in microstructured optical fibers (MOF).

Keywords

Microstructured fiber Photonic crystal fiber Nonlinearity Supercontinuum Germanium doped silica Multicomponent glass Birefringence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartelt, H., Kirchhof, J., Kobelke, J., Schuster, K., Schwuchow, A., Mörl, K., Röpke, U., Leppert, J., Lehmann, H., Smolka, S., Barth, M., Benson, O., Taccheo, S., D’Andrea, C.: Preparation and application of functionalized photonic crystal fibres. Phys. Stat. Sol. C (accepted 09/2007)Google Scholar
  2. Boiling, N.L., Glass, A.J., Owyoung, A.: Empirical relationship for prediction nonlinear refractive index changes in optical solids. IEEE J. Quant. Electron. QE-14(8), 601–608 (1978)CrossRefADSGoogle Scholar
  3. D’Andrea, C., Ferrari, R., Bassi, A., Taccheo, S., Cubeddu, R., Schuster, K., Kobelke, J.: Fluorescence lifetime spectroscopy using tunable visible light generated by high-order mode propagation in microstructured fiber. CLEO Europe 2007, Munich, Germany, paper CD-1613 (2007)Google Scholar
  4. Ebendorff-Heidepriem, H., Petropoulos, P., Asimakis, S., Finazzi, V., Moore, R., Frampton, K., Koizumi, F., Richardson, D., Monro, T.: Bismuth glass holey fibers with high nonlinearity. Opt. Express 12(21), 5082–5087 (2004)CrossRefADSGoogle Scholar
  5. Efimov, A., Taylor, A., Omenetto, F., Knight, J., Wadsworth, W., Russell, P.: Nonlinear generation of very high-order UV modes in microstructured fibers. Opt. Express 11(8), 910–918 (2003)ADSGoogle Scholar
  6. Fournier, J.T., Snitzer, E.: The Nonlinear Refractive Index of Glass. IEEE J. Quant. Electron. QE-10(5), 473–475 (1974)CrossRefADSGoogle Scholar
  7. Feng, X., Monro, T., Petropoulos, P., Finazzi, V., Hewak, D.W.: Solid microstructured optical fiber. Opt. Express 11(18), 2225–2230 (2003)ADSGoogle Scholar
  8. Feng, X., Mairaj, A.K., Hewak, D.W., Monro, T.M.: Towards high-index glass based monomode holey fibre with large mode area. Electron. Lett. 40(3), 167–169 (2004)CrossRefGoogle Scholar
  9. Feng, X., Mairaj, A.K., Hewak, D.W., Monro, T.M.: Nonsilica glasses for holey fibers. J. Lightwave Technol. 23(6), 2046–2054 (2005)CrossRefADSGoogle Scholar
  10. Guiyao, Z., Zhiyun, H., Shuguang, L., Lantian, H.: Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt. 45, 4433–4436 (2006)CrossRefADSGoogle Scholar
  11. Hoo, Y.L., Jin, W., Ju, J., Ho, H.L., Wang, D.N.: Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Opt. Commun. 242(4–6), 327–332 (2004)CrossRefADSGoogle Scholar
  12. Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D., Rutt, H.N.: Extruded singlemode nonsilica glass holey optical fibers. Electron. Lett. 38(12), 546–547 (2002)CrossRefGoogle Scholar
  13. Kumar, V.V.R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A.: Extruded soft glass photonic crystal fibre for ultrabroad supercontinuum generation. Opt. Express 10(25), 1520–1525 (2002)ADSGoogle Scholar
  14. Kirchhof, J., Kobelke, J., Schuster, K., Bartelt, H., Iliew, R., Etrich, C., Lederer, F.: In: Busch, K., Lölkes, S., Wehrspohn, R.B., Föll, H. (eds.) Photonic Crystal Fibers in Photonic Crystals: Advances in Design, Fabrication, and Characterization, Chap. 14. pp. 266–288. Wiley-VCH Verlag GmbH & Co. KGaA (2004)Google Scholar
  15. Knight, J.C.: Photonic crystal fibres. nature 424, 847–851 (2003)CrossRefADSGoogle Scholar
  16. Liu, J.G., Kai, G.Y., Xue, L.F., Whang, Z., Liu, Y., Li, Y., Zhang, C., Sun, T., Dong, X.: Modal cutoff properties in germanium-doped photonic crystal fiber. Appl. Opt. 45(9), 2035–2038 (2006)CrossRefADSGoogle Scholar
  17. Petropoulos, P., Ebendorff-Heidepriem, H., Finazzi, V., Moore, R., Frampton, K., Richardson, D., Monro, T.M.: Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express 11(26), 3568–3573 (2003)ADSCrossRefGoogle Scholar
  18. Szpulak, M., Statkiewicz, G., Olszewski, J., Martynkien, T., Urbańczyk, W., Wójcik, J., Makara, M., Klimek, J., Nasilowski, T., Berghams, F., Thienpont, H.: Experimental and theoretical investigations of the birefringent holey fiber with triple defect. Appl. Opt. 44, 2652–2658 (2005)CrossRefADSGoogle Scholar
  19. Wolchover, N.A., Luan, F., George, A.K., Knight, J.C., Omenetto, F.G.: High nonlinearity glass photonic crystal nanowires. Opt. Express 15, 829–833 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Kay Schuster
    • 1
  • Jens Kobelke
    • 1
  • Stephan Grimm
    • 1
  • Anka Schwuchow
    • 1
  • Johannes Kirchhof
    • 1
  • Hartmut Bartelt
    • 1
  • Andreas Gebhardt
    • 2
  • Philippe Leproux
    • 3
  • Vincent Couderc
    • 3
  • Waclaw Urbanczyk
    • 4
  1. 1.Optical Fibers and Fiber ApplicationsInstitute of Photonic Technology JenaJenaGermany
  2. 2.VITRON Spezialwerkstoffe GmbHJenaGermany
  3. 3.XLIMUniversite de LimogesLimogesFrance
  4. 4.Wroclaw University of TechnologyWroclawPoland

Personalised recommendations