Optical and Quantum Electronics

, Volume 39, Issue 10–11, pp 927–937

Mathematical analysis of the lasing eigenvalue problem for the optical modes in a layered dielectric cavity with a quantum well and distributed Bragg reflectors

Article

Abstract

Optical modes and associated linear threshold values of material gain bringing them to lasing are investigated for a VCSEL-type cavity with a quantum well, sandwiched between two distributed Bragg reflectors. They are found as solutions to a specific novel eigenvalue problem with the “active” imaginary part of the quantum well refractive index. For the calculation of the Bragg mirror reflection coefficients, well-established method of the transfer matrices is used. The presented results accurately quantify intuitively predictable lowering of the modal thresholds for the modes whose lasing frequencies lay inside the reflectors rejection bands. Besides, they demonstrate that this approach automatically incorporates the account of overlapping between the active region and the modal E-field patterns and its effect on the thresholds.

Keywords

Bragg reflector Eigenproblem Laser Microcavity Threshold Transfer matrix VCSEL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M., Wolf, E.: Principles of Optics, 4th ed. Pergamon Press, Oxford (1968)Google Scholar
  2. Campenhout, J.V., Bienstman, P., Baets, R.: Band-edge lasing in gold-clad photonic-crystal membranes. IEEE J. Commun. 23(7), 1418–1423 (2005)Google Scholar
  3. Chung, I.-S., Lee, Y.T., Kim , J.E., Park, H.Y.: Effect of outermost layers on resonant cavity enhanced devices. J. Appl. Phys. 96(05), 2423–2427 (2004)CrossRefADSGoogle Scholar
  4. Corzine, S.W. et al.: A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE J. Quant. Electron. 27, 2086 (1991)CrossRefADSGoogle Scholar
  5. De Leonardis, F., Passaro, V.M.N., Magno, F.: Improved simulation of VCSEL distributed Bragg reflectors. J. Comput. Electron. 6, 289–292 (2007)CrossRefGoogle Scholar
  6. Huffaker, D.L., Deppe, D.G.: Low-threshold VCSELs based on high-contrast distributed Bragg reflectors. Appl. Phys. Lett. 70(14), 1781–1783 (1997)CrossRefADSGoogle Scholar
  7. Kim, B.G. et al.: Comparison between the matrix method and the coupled-wave method in the analysis of Bragg reflector structures. J. Opt. Soc. Am. 9, 132 (1992)ADSCrossRefGoogle Scholar
  8. Klein, B., Register, L.F., Hess, K., Deppe, D.G., Deng, Q.: Self-consistent Green’s function approach to the analysis of dielectrically apertured VCSELs. Appl. Phys. Lett. 73(23), 3324–3326 (1998)CrossRefADSGoogle Scholar
  9. Noble, M.J., Loehr, J.P., Lott, J.A.: Analysis of microcavity VCSEL lasing modes using a full-vector weighted index method. IEEE J. Quantum Electron. 34, 1890–1903 (1998)CrossRefADSGoogle Scholar
  10. Piprek, J. (ed.): Optoelectronic Devices: Advanced Simulation and Analysis. Springer, Berlin (2005)Google Scholar
  11. Ripoll, J., Soukoulis, C.M., Economou, E.N.: Optimal tuning of lasing modes through collective particle resonance. J. Opt. Soc. Am. B. 21(1), 141–149 (2004)CrossRefADSGoogle Scholar
  12. Smotrova, E.I., Nosich, A.I.: Mathematical analysis of the lasing eigenvalue problem for the whispering-gallery modes in a 2-D circular dielectric microcavity. Opt. Quant. Electron. 36(1–3), 213–221 (2004)CrossRefGoogle Scholar
  13. Smotrova, E.I., Nosich, A.I., Benson, T.M., Sewell, P.: Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modelling with accurate 2D analysis. IEEE J. Quant. Electron. 11(5), 1135–1142 (2005)Google Scholar
  14. Streiff, M., Witzig, A., Pfeiffer, M., Royo, P., Fichtner, W.: A comprehensive VCSEL device simulator. IEEE J. Quantum Elect. 9(3), 879–891 (2003)CrossRefGoogle Scholar
  15. Yang, G.M., MacDougal, M.H., Zhao, H., Dapkus, P.D.: Microcavity effects on the spontaneous emission from InGaAdGaAs quantum wells. J. Appl. Phys. 78(6), 3605–3609 (1995)CrossRefADSGoogle Scholar
  16. Yu, S.F.: Analysis and Design of Vertical Cavity Surface Emitting Lasers. Wiley (2003)Google Scholar
  17. Zhang, X.H., Chua, S.J., Liu, W., Wang, L.S., Yong, A.M., Chou, S.Y.: Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells. Appl. Phys. Lett. 88, 191111 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Institute of Radiophysics and Electronics NASUKharkivUkraine

Personalised recommendations