Optical and Quantum Electronics

, Volume 39, Issue 10–11, pp 913–925 | Cite as

Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens

  • Giovanni Tartarini
  • Thomas Tanggaard Alkeskjold
  • Lara Scolari
  • Anders Bjarklev
  • Paolo Bassi
Article

Abstract

Through a detailed electromagnetic analysis we investigate the characteristics of liquid crystal infiltrated photonic crystal Fibers guiding by the Photonic Bandgap effect. The analysis, carried out using the Finite Element Method and including also material dispersion effects, puts into evidence particular spectral features related to the so-called splay alignment of the molecules constituting the liquid crystal, the so called mesogens. Control of these features is of use in the design of new devices for sensing or telecommunication applications.

Keywords

Photonic crystal fibers Photonic bandgap Liquid crystals  Anisotropic materials Finite element method Leaky modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkeskjold, T.T.: Optical devices based on liquid crystal photonic bandgap fibers. Ph.D. Thesis, Research Center COM, Technical University of Denmark (2005)Google Scholar
  2. Alkeskjold T.T., Laegsgaard J., Hermann D.S., Anawati A., Broeng J., Li J., Wu S.T. and Bjarklev A. (2004). All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 12: 5857–5871 CrossRefADSGoogle Scholar
  3. Birks T.A., Knight J.C., Mangan B.J. and Russel P.St.J. (2001). Photonic crystal fibers: an endless variety. IEICE Trans. Electron. E84-C: 585–592 Google Scholar
  4. Bjarklev, A., Broeng, J., Sanchez Bjarklev, A.: Photonic Crystal Fibres. Kluwer Academy Publishers (2003)Google Scholar
  5. Broeng J., Mogilevstev D., Barkou S.E. and Bjarklev A. (1999). Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5: 305–330 CrossRefADSGoogle Scholar
  6. Chandrasekhar, S.: Liquid Crystals. Cambbridge University Press (1977)Google Scholar
  7. Cristiani I., Liberale C., Degiorgio V., Tartarini G. and Bassi P. (2001). Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5 μm-band cascaded wavelength conversion. Opt. Comm. 187: 263–270 CrossRefADSGoogle Scholar
  8. Ghatak, A., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press (1998)Google Scholar
  9. Haakestad M.W., Alkeskjold T.T., Nielsen M.D., Scolari L., Riishede J., Engan H.E. and Bjarklev A. (2005). Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17: 819–821 CrossRefADSGoogle Scholar
  10. Hayata K., Miura K. and Koshiba M. (1989). Full vectorial finite element formalism for lossy anisotropic waveguides. IEEE Trans. Microwave Theory Tech. 37(5): 875–883 CrossRefADSGoogle Scholar
  11. Hernàndez-Figueroa H.E., Fernàndez F.A., Lu Y. and Davies J.B. (1995). Vectorial finite element modelling of 2D leaky waveguides. IEEE Trans. Magnet. 31: 1710–1713 CrossRefADSGoogle Scholar
  12. Larsen T.T., Bjarklev A., Hermann D.S. and Broeng J. (2003). Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 11: 2589–2596 ADSCrossRefGoogle Scholar
  13. Li J. and Wu S.T. (2004). Extended Cauchy Equations for the refractive indices of liquid crystals. J. Appl. Phys. 96: 19–24 CrossRefADSGoogle Scholar
  14. Litchinitser N.M., Dunn S.C., Steinwurzel P.E., Eggleton B.J., White T.P., McPhedran R.C. and Martijin de Sterke C. (2004). Application of an ARROW model for designing tunable photonic devices. Opt. Exp. 12: 1540–1550 CrossRefADSGoogle Scholar
  15. Rahman B.M.A., Kabir A.K.M.S., Rajarajan M., Grattan K.T.V. and Rakocevic V. (2006). Birefringence study of photonic crystal fibers by using the full-vectorial finite element method. Appl. Phys. B 84: 75–82 CrossRefADSGoogle Scholar
  16. Saitoh K. and Koshiba M. (2003). Single-polarization single-mode photonic crystal fibers. IEEE Phot. Techn. Lett. 15: 1384–1386 CrossRefADSGoogle Scholar
  17. Scolari L., Alkeskjold T.T., Hermann D.S., Anawathi A., Nielsen M.D., Bjarklev A., Riishede J. and Bassi P. (2005). Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Opt. Expr. 13: 7483–7496 CrossRefADSGoogle Scholar
  18. Tartarini G. (2000). Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides. Opt. Quant. Elect. 32: 719–734 CrossRefGoogle Scholar
  19. Tartarini G., Pansera M., Alkeskjold T.T., Bjarklev A. and Bassi P. (2007). Polarization properties of elliptical hole liquid crystal photonic bangap fibres. IEEE J. Lightw. Technol. 25: 2522–2530 CrossRefADSGoogle Scholar
  20. Tartarini G., Stolte R. and Renner H. (2005). Experimental and theoretical of leaky extraordinary modes in negative uniaxial channel waveguides. Opt. Comm. 253: 109–117 CrossRefADSGoogle Scholar
  21. Wolinski T.R., Szaniawska K., Ertman S., Lesiak P., Domanski A.W., Dabrowski R., Nowinowski- Kruszelnicki E. and Wojcik J. (2006). Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres. Meas. Sci. Technol. 17: 985–991 CrossRefADSGoogle Scholar
  22. Zografopoulos D.C., Kriezis E.E. and Tsiboukis T.D. (2006). Tunable highly birefringent bandgap-guiding liquid- crystal microstructured fibers. IEEE J. Lightw. Technol. 24: 3427–3432 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Giovanni Tartarini
    • 1
  • Thomas Tanggaard Alkeskjold
    • 2
  • Lara Scolari
    • 2
  • Anders Bjarklev
    • 2
  • Paolo Bassi
    • 1
  1. 1.Dipartimento di Elettronica, Informatica e SistemisticaUniversitá di BolognaBolognaItaly
  2. 2.COM·DTU, Department of Communications, Optics and MaterialsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations