Waveguiding losses of micro-structured fibres—plane wave method revisited

  • Rafał KotyńskiEmail author
  • Maciej Dems
  • Krassimir Panajotov


We present a numerical method for the analysis of translationally invariant systems with anisotropic and dispersive electric and magnetic properties. This material model enables us to calculate the mode structure of photonic devices such as photonic crystal fibres (PCF) containing inclusions with anisotropic, conducting, magnetic, or negative index materials. The method is based on the popular plane wave (PWM) discretisation scheme applied to the generalised vectorial transmission line equations. The analysis is focused on the calculation of radiation losses. For this purpose we consider a uniaxial perfectly matched layer (UPML) termination of the otherwise periodic system. We asses the accuracy of the method and the properties of spurious modes created inside the UPML.


Plane wave method Perfectly matched layer Photonic crystal fibres Radiation losses Anisotropy Magnetic material 


  1. Antkowiak M., Kotyński R., Nasilowski T., Lesiak P., Wojcik J., Urbanczyk W., Berghmans F., Thienpont H. (2005). Phase and group modal birefringence of triple-defect photonic crystal fibres. J. Opt. A: Pure Appl. Opt. 7: 763–766 CrossRefADSGoogle Scholar
  2. Bjarklev A., Jes B., Bjarklev A.S. (2003). Photonic Crystals Fibers. Kluwer Academic Publishers, Boston Google Scholar
  3. Campbell S., McPhedran R.C., de Sterke C.M., Botten L.C. (2004). Differential multipole method for microstructured optical fibers. J. Opt. Soc. Am. B 21: 1919–1928 ADSGoogle Scholar
  4. Cucinotta A., Selleri S., Vincetti L., Zoboli M. (2002). Holey fiber analysis through the finite-element method. IEEE Photon. Technol. Lett. 14: 1530–1532 CrossRefADSGoogle Scholar
  5. Dems M., Kotyński R., Panajotov K. (2005). Plane Wave Admittance Mehtod— a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express. 13: 3196–3207 CrossRefADSGoogle Scholar
  6. Ferrando A., Silvestre E., Miret J.J., Andres P., Andres M.V. (1999). Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett. 24: 276–278 ADSGoogle Scholar
  7. Hochman A., Leviatan Y. (2005). Calculation of confinement losses in photonic crystal fibers by use of a source-model technique. J. Opt. Soc. Am. B 22: 474–480 CrossRefADSGoogle Scholar
  8. Hochman A., Leviatan Y. (2005). Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins. Opt. Express 13: 6193–6201 CrossRefADSGoogle Scholar
  9. Issa N., Poladian L. (2003). Vector wave expansion method for leaky modes of microstructured optical fibers. IEEE J. Lightwave Technol. 21: 1005–1012 CrossRefADSGoogle Scholar
  10. Johnson S.G., Joannopoulos J.D. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8: 173–190 ADSCrossRefGoogle Scholar
  11. Kotyński R., Antkowiak M., Berghmans F., Theinpont H., Panajotov K. (2005). Photonic crystal fibers with material anisotropy. Opt. Quant. Electron. 37: 253–264 CrossRefGoogle Scholar
  12. Knight J.C, Broeng J., Birks T.A., Russell P.St.J. (1998). Photonic band gap guidance in optical fibers. Science 283: 1476–1478 CrossRefGoogle Scholar
  13. Monro T.M., Richardson D.J., Broderick N.G.R., Bennett P.J. (2000). Modelling large air fraction holey optical fibers. IEEE J. Lightwave Technol. 18: 50–56 CrossRefADSGoogle Scholar
  14. Panajotov K., Kotyński R., Camarena M., Thienpont H. (2005). Modeling of the polarization behavior of elliptical surface-relief VCSELs. Opt. Quant. Electron. 37: 241–252 CrossRefGoogle Scholar
  15. Pottage J.M., David, Bird, Hedley T.D., Knight J.C., Birks T.A., Russell P.St.J., Roberts P.J. (2003). Robust photonic band gaps for hollow core guidance in PCF made from high index glass. Opt. Express 11: 2854–2861 ADSCrossRefGoogle Scholar
  16. Ouyang G., Xu Y., Yariv A. (2002). Theoretical study on dispersion compensation in air-core Bragg fibers. Opt. Express 10: 899–908 ADSGoogle Scholar
  17. Russell P. (2003). Photonic Crystal Fibers. Science 299: 358–362 CrossRefADSGoogle Scholar
  18. Saitoh K., Koshiba M. (2001). Full-vectorial finite element beam propagation method with perfectly matched layers for anistropic optical waveguides. IEEE J. Lightwave Technol. 19: 405–413 CrossRefADSGoogle Scholar
  19. Sauvan C., Lalanne P., Hugonin J.P. (2004). Truncation rules for modelling discontinuities with Galerkin method in electromagnetic theory. Opt. Quant. Electron. 36: 271–284 CrossRefGoogle Scholar
  20. Sozuer H.S., Haus W., Inguva R. (1992). Photonic bands: Convergence problems with the plane-wave method. Phys. Rev. B 45: 13962–13972 CrossRefADSGoogle Scholar
  21. Szpulak M., Urbanczyk W., Serebryannikov E., Zheltikov A., Hochman A., Leviatan Y., Kotyński R., Panajotov K. (2006). Comparison of different methods for rigorous modeling of photonic crystal fibers. Opt. Express 14: 5699–5714 CrossRefADSGoogle Scholar
  22. White T.P.,Kuhlmey B.T., McPhedran R. C., Maystre D., Renversez G., de Sterke C.M, Botten L.C. (2002). Multipole method for microstructured optical fibers. I. Formaulation. J. Opt. Soc. Am. B 19: 2322–2330 ADSCrossRefGoogle Scholar
  23. Zhu Z., Brown T.G. (2001). Analysis of the space filling modes of photonic crystal fibers. Opt. Express 8: 547–554 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rafał Kotyński
    • 1
    Email author
  • Maciej Dems
    • 2
  • Krassimir Panajotov
    • 3
    • 4
  1. 1.Department of PhysicsWarsaw UniversityWarsawPoland
  2. 2.Institute of PhysicsTechnical University of ŁódźLodzPoland
  3. 3.Department of Applied Physics and PhotonicsVrije Universiteit BrusselBrusselsBelgium
  4. 4.Institute of Solid State PhysicsSofiaBulgaria

Personalised recommendations