Optical and Quantum Electronics

, Volume 39, Issue 4–6, pp 353–360 | Cite as

Enhancement of the SHG efficiency in a doubly resonant 2D-photonic crystal microcavity

  • D. Antonucci
  • D. de Ceglia
  • A. D’Orazio
  • M. De Sario
  • V. Marrocco
  • V. Petruzzelli
  • F. Prudenzano
Article

Abstract

In this paper we discuss the conditions to obtain the enhancement of second harmonic generation in a two-dimensional circular photonic crystal AlGaAs cavity. The photonic crystal circular cavity offers the possibility of having high-Q resonance modes with respect to those obtained with other types of photonic crystal lattices. The crystallographic cut of the AlGaAs provides a strong nonlinear coupling between a transverse-magnetic (TM) polarized resonant mode at the fundamental wavelength and a transverse-electric (TE) polarized resonant mode at second harmonic wavelength. The double resonance condition leads to a strong improvement of the second harmonic generation process. A preliminary linear analysis has been performed by using the finite-difference time-domain method, which includes the dispersive response of the material, modeled using the well-known one-pole pair Lorentzian function.

Keywords

Finite difference time domain (FDTD) Microcavity Second harmonic generation (SHG) Two-dimensional photonic crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benisty H., Weisbuch C., Labilloy D., Rattier M., Smith C.J.M., Krauss T.F., De La Rue R.M., Houdré R., Oesterle U., Jouanin C. and Cassagne D. (1999). Optical and confinement properties of two-dimensional photonic crystals. IEEE J. Lightwave Technol. 17(11): 2063–2077 CrossRefADSGoogle Scholar
  2. Bourgeade A. and Freysz E. (2000). Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations. J. Opt. Soc. Am. B 17(2): 226–234 ADSGoogle Scholar
  3. Boyd R.W. (2003). Nonlinear Optics. Academic Press, San Diego, CA Google Scholar
  4. Centini M., Sibilia C., Scalora M., D’Aguanno G., Bertolotti M., Bloemer M.J., Bowden C.M. and Nefedov I. (1999). Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. Phys. Rev. E 60(4): 4891–4898 CrossRefADSGoogle Scholar
  5. Cowan A.R. and Young J.F. (2002). Mode matching for second-harmonic generation in photonic crystal waveguides. Phys. Rev. B 65(8): 085106 CrossRefADSGoogle Scholar
  6. Dolgova T.V., Maidykovski A.I., Martemyanov M.G., Fedyanin A.A., Aktsipetrov O.A., Marowsky G., Yakovlev V.A. and Mattei G. (2002). Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals. Appl. Phys. Lett. 81(15): 2725–2727 CrossRefADSGoogle Scholar
  7. D’Orazio, A., de Ceglia, D., De Sario, M., Petruzzelli, V., Prudenzano, F.: Second order nonlinear interactions in periodic waveguides. ICTON 2004, IEEE Conference Proceedings, 126-130 (2004)Google Scholar
  8. D’Orazio A., de Ceglia D., De Sario M., Petruzzelli V. and Prudenzano F. (2005). FDTD analysis of second harmonic generation in a quasi-one dimensional photonic band gap waveguide. Recent Res. Devel. Optics 5: 103–116 Google Scholar
  9. Dumeige Y., Raineri F., Levenson J.A. and Letartre X. (2003). Second-harmonic generation in one-dimensional photonic edge waveguides. Phys. Rev. E 68: 66617 CrossRefADSGoogle Scholar
  10. Horiuchi N., Segawa Y., Nozokido T., Mizumo K. and Miyazaki H. (2004). Isotropic photonic band gap in a circular photonic crystal. Optics Letters 29(10): 1084–1086 CrossRefADSGoogle Scholar
  11. Joannopoulos J.D., Meade R.D. and Winn J.N. (1995). Photonic Crystals: Molding the Flow of Light. Princeton Univ. Press, Princeton, NJ MATHGoogle Scholar
  12. John S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23): 2486–2489 CrossRefADSGoogle Scholar
  13. Johnson S.G. and Joannopoulos J.D. (2002). Photonic Crystals—The Road from Theory to Practice. Kluwer, Boston, MA Google Scholar
  14. Liscidini, M., Andreani, L.C.: Second harmonic generation in doubly resonant planar microcavities. Icton 2004, IEEE Conference Proceedings, 346–349 (2004)Google Scholar
  15. Liscidini M. and Andreani L.C. (2006). Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors. Phys. Rev. E 73: 016613 CrossRefADSGoogle Scholar
  16. Martorell J. and Corbalán R. (1994). Enhancement of second-harmonic generation in a periodic structure with a defect. Opt. Commun. 108: 319–323 CrossRefADSGoogle Scholar
  17. Mingaleev S.F. and Kivshar Y.S. (2001). Self-trapping and stable localized modes in nonlinear photonic crystals. Phys. Rev. Lett. 86(24): 5474–5477 CrossRefADSGoogle Scholar
  18. Mondia J.P., Jiang W., Cowan A.R., Young J.F. and Driel H.M. (2003). Enhanced second-harmonic generation from planar photonic crystals. Opt. Lett. 28(24): 2500–2502 ADSGoogle Scholar
  19. Raineri F., Dumeige Y., Letartre X. and Levenson J.A. (2002). Nonlinear decoupled FDTD code: phase-matching in 2D defective crystal. Electron. Lett. 38(25): 1704–1706 CrossRefGoogle Scholar
  20. Reinke C.M., Jafarpour A., Momeni B., Soltani M., Khorasani S., Adibi A., Xu Y. and Lee R.K. (2006). Nonlinear finite-difference time-domain method for the simulation of anisotropic, \chi(2), and \chi(3) optical effects. J. Lightwave Technol. 24(1): 624–634 CrossRefADSGoogle Scholar
  21. Ren F.F., Li R., Cheng C., Wang H.T., Qiu J.R., Si J.H. and Hirao K. (2004). Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes. Phys. Rev. B 70: 245109 CrossRefADSGoogle Scholar
  22. Sakoda K. (2001). Optical Properties of Photonic Crystals. Springer-Verlag, Berlin, Germany Google Scholar
  23. Scalora M., Bloemer M.J., Manka A.S., Dowling J.P., Bowden C.M., Viswanathan R. and Haus J.W. (1997). Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures. Phys. Rev. A 56(4): 3166–3174 CrossRefADSGoogle Scholar
  24. Shi B., Jiang Z.M., Zhou X.F. and Wang X. (2002). A two-dimensional nonlinear photonic crystal for strong second harmonic generation. J. Appl. Phys. 91(10): 6769–6771 CrossRefADSGoogle Scholar
  25. Shi B., Jiang Z.M. and Wang X. (2001). Defective photonic crystals with greatly enhanced second-harmonic generation. Opt. Lett. 26(15): 1194–1196 ADSGoogle Scholar
  26. Taflove A. (2000). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood MA MATHGoogle Scholar
  27. Trull J., Vilaseca R., Martorell J. and Corbalán R. (1995). Second-harmonic generation in local modes of a truncated periodic structure. Opt. Lett. 20(17): 1746–1748 ADSCrossRefGoogle Scholar
  28. Xiao S. and Qiu M. (2005). High-Q microcavities realized in a circular photonic crystal slab. Photonics and Nanostructures, Fundamentals and Applications 3: 134–138 CrossRefADSGoogle Scholar
  29. Yablonovitch E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20): 2059–2062 CrossRefADSGoogle Scholar
  30. Yariv A. and Yeh P. (1984). Optical Waves in Crystals—Propagation and Control of Laser Radiation. Wiley-Interscience, New York, NY Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Antonucci
    • 1
  • D. de Ceglia
    • 1
  • A. D’Orazio
    • 1
  • M. De Sario
    • 1
  • V. Marrocco
    • 1
  • V. Petruzzelli
    • 1
  • F. Prudenzano
    • 2
  1. 1.Dipartimento di Elettrotecnica ed ElettronicaPolitecnico di BariBariItaly
  2. 2.Dipartimento di Ingegneria dell’Ambiente e per lo Sviluppo SostenibileSeconda Facoltà di IngegneriaTarantoItaly

Personalised recommendations