Advertisement

Optical and Quantum Electronics

, Volume 38, Issue 15, pp 1269–1278 | Cite as

Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL

  • Adel Bousseksou
  • Sophie Bouchoule
  • Moustafa El Kurdi
  • Martin Strassner
  • Isabelle Sagnes
  • Paul Crozat
  • Joel Jacquet
Article

Abstract

We report on the design, fabrication, and characterization of InP-based 1.55 μm wavelength large diameter (50 μm) electrically pumped vertical external cavity surface emitting lasers (EP-VECSELs). The hybrid device consists of a half vertical cavity surface emitting laser (1/2-VCSEL) structure assembled with a concave dielectric external mirror. The 1/2-VCSEL is monolithically grown on InP substrate and includes a semiconductor Bragg mirror and a tunnel junction for electrical injection. Buried (BTJ) and ion implanted (ITJ) tunnel junction electrical confinement schemes are compared in terms of their thermal and electrical characteristics. Lower thermal resistance values are measured for BJT, but reduced current crowding effects and uniform current injection are evidenced for ITJ. Using the ITJ technique, we demonstrate Room-Temperature (RT) continuous-wave (CW) single transverse mode laser operation from 50-μm diameter EP-VECSEL devices. We show that the experimental laser optical output versus injected current (LI) curves are well-reproduced by a simple analytical thermal model, consistent with the thermal resistance measurements performed on the 1/2-VCSEL structure. Our results indicate that thermal heating is the main mechanism limiting the maximum CW output power of 50-μm diameter VECSELs, rather than current injection inhomogeneity.

Keywords

1.55 μm laser emission External cavity laser Semiconductor Bragg reflector Tunnel junction Vertical cavity surface emitting semiconductor laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abram R.H., Gardner K.S., Riis E. and Ferguson A. (2004). Narrow linewidth operation of a tunable optically pumped semiconductor laser. Opt. Exp. 12: 5434–5439 CrossRefADSGoogle Scholar
  2. Boucart J., Starck C., Gaborit F., Plais A., Bouché N., Derouin E., Goldstein L., Fortin C., Carpentier D., Salet P., Brillouet F. and Jacquet J. (1999). 1-mW CW-RT monolithic VCSEL at 1.55 mu m. IEEE Photon. Technol. Lett. 11: 629–631 CrossRefGoogle Scholar
  3. Bouchoule, S., Leclercq, J.-L., Regrény, P., Sagnes, I., Jacquet, J., Strassner, M., Plais, A., Poingt, F.: In-P Based wavelength tunable monolithic VCSEL structure with InP/air-gap top mirror compatible with a single epitaxy step. SPIE Photonics Europe Conference, Strasbourg, France, 26–30 April, Conf. Proceed. Paper 5453-24 (2004)Google Scholar
  4. Bousseksou A., El Kurdi M., Salik M.D., Sagnes I. and Bouchoule S. (2004). Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55 mu m. Electron. Lett. 40: 1490–1491 CrossRefGoogle Scholar
  5. El Kurdi M., Bouchoule S., Bousseksou A., Sagnes I., Plais A., Strassner M., Symonds C., Garnache A. and Jacquet J. (2004). Room-temperature continuous-wave laser operation of electrically-pumped 1.55 mu m VECSEL. Electron. Lett. 40: 671–672 CrossRefGoogle Scholar
  6. Garnache A., Kachanov A.A., Stoeckel F. and Houdre R. (2000). Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy. J.Opt. Soc. of America B 17: 1589–1598 ADSGoogle Scholar
  7. Hadley M.A., Wilson G.C., Lau K.Y. and Smith J.S. (1993). High single-transverse-mode output from external-cavity surface-emitting laser-diodes. Appl. Phys. Lett. 63: 1607–1609 CrossRefADSGoogle Scholar
  8. Hastie J.E., Calvez S., Dawson M., Leinonen T., Laasko A., Lyytikaïnene J. and Pessa M. (2005). High power CW red VECSEL with linearly polarized TEM00 output beam. Opt. Exp. 13: 77–81 CrossRefADSGoogle Scholar
  9. Hoogland S., Dhanjal S., Tropper A.C., Robert J.S., Häring R., Paschotta R., Morier-Genoud F. and Keller U. (2000). Passively Mode-Locked diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 12: 1135–1137 CrossRefGoogle Scholar
  10. Keeler G., Serkland D.K., Geib K.M., Peake G.M., Mar A. and A. (2005). Single transverse mode operation of electrically pumped vertical-external-cavity surface-emitting lasers with micromirrors. IEEE Photon. Technol. Lett. 17: 522–523 CrossRefGoogle Scholar
  11. Kuznetsov M., Hakimi F., Sprague R. and Mooradian A. (1999). Design and characteristics of high-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE J. Select. Topics Quantum Electron. 5: 561–572 CrossRefGoogle Scholar
  12. Lu B., Zhou P., Cheng J. and Malloy K.J. (1994). High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition. Appl. Phys., Lett. 65: 1337–1339 CrossRefADSGoogle Scholar
  13. Maute M., Kögel B., Böhm G., Meissner P. and Amann M.-C. (2006). MEMS-tunable 1.55 mu m VCSEL with extended tuning range incorporating a buried tunnel junction. IEEE Photon. Technol. Lett. 18: 688–690 CrossRefGoogle Scholar
  14. Ortsiefer M., Baydar S., Windhorn K., Böhm G., Rösskopf J., Schau R., Rönneberg E., Hofmann W. and Amann M.-A. (2005). 2.5-m W single-mode operation of 1.55 mu m buried tunnel junction VCSELs. IEEE Photon. Technol. Lett. 17: 1596–1598 CrossRefGoogle Scholar
  15. Guden M. and Piprek M. (1996). Material prameters of quaternary III-V semiconductors dor multilayer mirrors at 1.55 mu m wavelength. Modelling Simul. Mater. Sci. Eng. 4: 349–353 CrossRefADSGoogle Scholar
  16. Rafailov E.U., Sibbett W., Moordiaan A., McInerney J.G., Karlsson H., Wang S. and Laurel F. (2003). Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal. Opt. Lett. 28: 2091–2093 ADSGoogle Scholar
  17. Raymond T.D., Alford W.J., Crawford M.H. and Allerman A.A. (1999). Intracavity frequency doubling of a diode-pumped external-cavity surface emitting semiconductor laser. Opt. Lett. 24: 1127–1129 ADSGoogle Scholar
  18. Strzelecka E.M., Inerney J.G., Mooradian A., Lewis A., Shchegrov A.V., Lee D., Watson J.P., Kennedy K., Carey G.P., Zhou H., Ha W., Cantos B.D., Hitchens W.R., Heald D.L., Doan V.V. and Lear K.L. (2003). High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept. Proc. of SPIE 4993: 57–67 CrossRefADSGoogle Scholar
  19. Symonds C., Dion J., Fainese D., Strassner M., Leroy L. and Oudar J.-L. (2004). High performance 1.55 mu m vertical external cavity surface emitting laser with broadband integrated dielectric-metal mirror. Electron. Lett. 40: 734–735 CrossRefGoogle Scholar
  20. Wiepiejewski T., Peters M.G., Thibeault B.J., Young D.B. and Coldren L.A. (1996). Size-dependent output power saturation of vertical-external cavity surface emitting laser diodes. IEEE Photon. Technol. Lett. 8: 10–12CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Adel Bousseksou
    • 1
  • Sophie Bouchoule
    • 1
  • Moustafa El Kurdi
    • 2
  • Martin Strassner
    • 1
  • Isabelle Sagnes
    • 1
  • Paul Crozat
    • 2
  • Joel Jacquet
    • 3
  1. 1.Laboratoire de Photonique et de Nanostructures (LPN)CNRSMarcoussisFrance
  2. 2.Institut d’Electronique Fondamentale (IEF)CNRS, Université Paris SudOrsayFrance
  3. 3.Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS)SUPELECMetzFrance

Personalised recommendations