Advertisement

Optical and Quantum Electronics

, Volume 38, Issue 9–11, pp 731–759 | Cite as

Modelling leaky photonic wires: A mode solver comparison

  • P. BienstmanEmail author
  • S. Selleri
  • L. Rosa
  • H. P. Uranus
  • W. C. L. Hopman
  • R. Costa
  • A. Melloni
  • L. C. Andreani
  • J. P. Hugonin
  • P. Lalanne
  • D. Pinto
  • S. S. A. Obayya
  • M. Dems
  • K. Panajotov
Article

Abstract

We present results from a mode solver comparison held within the frameworkof the European COST P11 project. The structure modelled is a high-index contrast photonic wire in silicon-on- insulator subject to substrate leakage. The methods compared are both in-house developed and commercial, and range from effective index and perturbation methods, over finite-element and finite-difference codes, beam propagation methods, to film mode matching methods and plane wave expansion methods.

Keywords

optical mode solvers photonic wires substrate leakage waveguides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreani L.C. and Gerace D. (2006). Phys. Rev. B 73: 235114 CrossRefADSGoogle Scholar
  2. ARPACK Software, available from http://www.caam.rice.edu/pub/software/ARPACK.Google Scholar
  3. Bienstman P. (2004). Opt. Quantum Electron. 36: 5 CrossRefGoogle Scholar
  4. CAMFR, available from http://camfr.sourceforge.netGoogle Scholar
  5. Conradi O.S.F., Pregla R. and Helfert (2001). IEEE J. Quantum Electron. 37: 928 CrossRefADSGoogle Scholar
  6. COST P11 website: http://w3.uniroma1.it/energetica/Google Scholar
  7. Ctyroky J., Helfert S., Pregla R., Bienstman P., Baets R., De Ridder R., Stoffer R, Klaasse G., Petracek J., Lalanne P., Hugonin J.P. and DeLa Rue R.M. (2002). Opt Quantum Electron. 34: 455 CrossRefGoogle Scholar
  8. Cucinotta A, Pelosi G., Selleri S., Vincetti L. and Zoboli M. (1999). Microwave Opt. Technol. Lett. 23: 67 CrossRefGoogle Scholar
  9. Czyszanowski, T., M. Dems, H. Thienpont, and K. Panajotov. Proc. SPIE 6185 61850Y, 2006.Google Scholar
  10. Dems M., Kotynski R. and Panajotov K. (2005). Opt. Express 13: 3196 CrossRefADSGoogle Scholar
  11. Dems, M and K. Panajotov. 8th International Conference on Transparent Optical Networks, ICTON 2006, Nottingham UK, 18–22 Jun 2006.Google Scholar
  12. Dems, M., T. Czyszanowski. and K. Panajotov. Proc. SPIE 6182 618219, 2006.Google Scholar
  13. Dumon P., Bogaerts W., Van Campenhout J., Wiaux V., Wouters J., Beckx S., Taillaert D., Luyssaert B., Bienstman P., Van Thourhout D. and Baets R. (2004). IEEE Photonics Technol. Lett. 16: 1328 CrossRefGoogle Scholar
  14. Fimmwave, ver. 4.4 by Photon Design, http://www.photond.comGoogle Scholar
  15. Ghatak A.K., Thyagarajan K. and Shenoy M.R. (1987). J. Lightwave Technol. 5: 660 ADSCrossRefGoogle Scholar
  16. Hugonin J.P., Lalanne P., del Villar I. and Matias I.R. (2005). Opt. Quantum Electron. 37: 107 CrossRefGoogle Scholar
  17. Hugonin J.P. and Lalanne P. (2005). J. Opt. Soc. Am. A 22: 1844 CrossRefADSMathSciNetGoogle Scholar
  18. Johnson S.G., Ibanescu M., Skorobogatiy M.A., Weisberg O., Joannopoulos J.D. and Fink Y. (2002). Phys. Rev. E 65: 066611 CrossRefADSMathSciNetGoogle Scholar
  19. Lalanne P. and Jurek M.P. (1998). J. Mod. Opt. 45: 1357 CrossRefADSGoogle Scholar
  20. Li L.J. (1996). Opt. Soc. Am. A 13: 1024 ADSCrossRefGoogle Scholar
  21. Moharam M.G., Grann E.B., Pommet D.A. and Gaylord T.K. (1995). J. Opt. Soc. Am. A 12: 1068 ADSGoogle Scholar
  22. Obayya S.S.A., Rahman B.M.A. and El-Mikati H.A. (2000). J. Lightwave Technol. 18: 409 CrossRefADSGoogle Scholar
  23. Obayya S.S.A., Rahman B.M.A., Grattan K.T.V. and El-Mikati H.A. (2002). J. Lightwave Technol. 20: 1054 CrossRefADSGoogle Scholar
  24. Olympios, http://www.c2v.nlGoogle Scholar
  25. Selleri S. and Petracek J. (2001). Opt. Quantum Electron. 33: 373 CrossRefGoogle Scholar
  26. Selleri S, Vincetti L.A., Cucinotta A. and Zoboli M. (2001). Opt. Quantum Electron. 33: 359 CrossRefGoogle Scholar
  27. Silberstein E., Lalanne P., Hugonin J.P. and Cao Q. (2001). J. Opt. Soc. Am. A 18: 2865 ADSGoogle Scholar
  28. Sudbo A.S. (1993). Pure Appl. Opt. 2: 211 CrossRefADSGoogle Scholar
  29. Tamir, T. Guided-Wave Optoelectronics, Chap. 2. Springer-Verlag.Google Scholar
  30. Tsuji Y. and Koshiba M. (2000). J. Lightwave Technol. 18: 618 CrossRefADSGoogle Scholar
  31. Uranus H.P., Hoekstra H.J.W.M. and Groesen E. (2004). J. Nonlinear Opt. Phys. Mater. 13: 175 CrossRefADSGoogle Scholar
  32. Vassallo C. (1997). Opt Quantum Electron. 29: 95 CrossRefGoogle Scholar
  33. Wijnands F., Hoekstra H.W.M., Krijinen G.J.M. and Ridder R.M. (1994). J. Lightwave Technol. 12: 2066 CrossRefADSGoogle Scholar
  34. Xu C.L., Huang W.P. and Chaudhuri S.K. (1993). J. Lightwave Technol. 11: 1209CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • P. Bienstman
    • 1
    Email author
  • S. Selleri
    • 2
  • L. Rosa
    • 2
  • H. P. Uranus
    • 3
  • W. C. L. Hopman
    • 3
  • R. Costa
    • 4
  • A. Melloni
    • 5
  • L. C. Andreani
    • 6
  • J. P. Hugonin
    • 7
  • P. Lalanne
    • 7
  • D. Pinto
    • 8
  • S. S. A. Obayya
    • 8
  • M. Dems
    • 9
  • K. Panajotov
    • 10
  1. 1.Ghent UniversityGhentBelgium
  2. 2.Università degli Studi di ParmaParmaItaly
  3. 3.University of TwenteEnschedeThe Netherlands
  4. 4.CoreComMilanoItaly
  5. 5.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  6. 6.Dipartimento di Fisica “A. Volta”Università degli Studi di PaviaPaviaItaly
  7. 7.Laboratoire Charles Fabry de I’Institut d’Optique, CNRSUniv Paris-Sud, Campus PolytechniquePalaiseau cedexFrance
  8. 8.Institute of Advanced TelecommunicationsUniversity of Wales SwanseaSwanseaUK
  9. 9.Institute of PhysicsTechnical University of Lodz, ulLodzPoland
  10. 10.Department of Applied Physics and PhotonicsVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations