Optical and Quantum Electronics

, Volume 38, Issue 9–11, pp 761–780

Self-phase modulation in slow-wave structures: A comparative numerical analysis

  • Francesco Morichetti
  • Andrea Melloni
  • Jaroslav Čáp
  • Jiří Petráćek
  • Peter Bienstman
  • Gino Priem
  • Bjorn Maes
  • Michele Lauritano
  • Gaetano Bellanca
Article

Abstract

Self-phase modulation effects in 1D optical slow-wave structures made of Fabry–Pérot cavities coupled by Distributed Bragg Reflectors (DBRs) are discussed. The nonlinear response of the structure is investigated by a comparative analysis of several numerical methods operating either in time or frequency-domain. Time-domain methods include two Finite-Difference Time-Domain approaches, respectively, optimized to compensate for numerical dispersion and to model nonlinearity at any order. In the frequency-domain an efficient method based on a numerical integration of Maxwell’s equations and an iterative nonlinear extension of the Eigenmode Expansion method are discussed. A Nonlinear Equivalent Circuit of DBRs is also presented as a useful model to reduce computational efforts. Numerical results show that bistable effects and self-pulsing phenomena can occur when either the optical power or the number of coupled cavities of the structure are sufficiently increased.

Keywords

Nonlinear optics optical bistability resonators self-phase modulation slow-wave propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absil P.P., Hryniewicz J.V., Little B.E., Cho P.S., Wilson R.A., Joneckis L.G. and Ho P.T. (2000). Opt. Lett. 25:554ADSGoogle Scholar
  2. Agrawal G.P. (1999). Nonlinear Fiber Optics. Academic Press, New YorkGoogle Scholar
  3. Blair S. (2005). Opt. Exp. 13:3868CrossRefADSGoogle Scholar
  4. Boyd R.W. (1992). Nonlinear Optics. Academic Press, New YorkGoogle Scholar
  5. CAMFR, http://camfr.sourceforge.netGoogle Scholar
  6. Chen Y., Pasrija G., Farhang-Boroujeny B., Blair S. (2003). Opt Lett 28:1945ADSGoogle Scholar
  7. Christ A., J. Fröhlich and N. Kuster. 2002 IEICE Trans. Commun. E85-B:2904Google Scholar
  8. Heebner J.E., Lepeshkin N.N., Schweinsberg A., Wicks G.W., Boyd R.W., Grover R., Ho P.T. (2004). Opt Lett 29:769CrossRefADSGoogle Scholar
  9. Joseph R.M., Taflove A. (1997). IEEE Trans. Antennas Propag. 45:364CrossRefGoogle Scholar
  10. Kuester E.F., Chang D.C. (1975). IEEE Trans Microwave Theor Tech MTT-23:98CrossRefGoogle Scholar
  11. Lauritano M., Parini A, Bellanca G., Trillo S., Conforti M., Locatelli A., De Angelis C (2006). J. Opt. A: Pure Appl. Opt. 8:S494CrossRefGoogle Scholar
  12. Lugiato L.A. (1980). Opt. Commun. 33:108CrossRefADSGoogle Scholar
  13. Maes B., Bienstman P. and Baets R. (2004). Opt. Quantum. Elect. 36:15CrossRefGoogle Scholar
  14. Melloni A., F. Morichetti and M. Martinelli. Opt. Phot. News 44 2003aGoogle Scholar
  15. Melloni A., Morichetti F., Martinelli M. (2003). Opt. Quantum. Elect. 35:365CrossRefGoogle Scholar
  16. Melloni, A., F. Morichetti, S. Pietralunga and M. Martinelli. In: Proceeding of the 11th European Conference on Integrated Optics, Prague, 2003c, p. 97.Google Scholar
  17. Melloni A., Floridi M., Morichetti F., Martinelli M. (2003d). J. Opt. Soc. Am. A 20:273ADSGoogle Scholar
  18. Petráček J. (2006). Opt. Comm. 265:331CrossRefADSGoogle Scholar
  19. Stignani S. (2001) Graduation Thesis. Politecnico di MilanoGoogle Scholar
  20. Taflove, A. Computational Electrodynamics: The Finite Difference Time Domain Method for Electromagnetics. Artech House, Boston, 1995.Google Scholar
  21. Xu Y., Lee R.K. and Yariv A. (2000). J. Opt. Soc. Am. B 17:387ADSGoogle Scholar
  22. Yariv A., Yeh P. (1984) Optical Waves in Crystals. Wiley John, & SonsGoogle Scholar
  23. Yee K.S. (1966). IEEE Trans Antennas Propag 14:302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Francesco Morichetti
    • 1
  • Andrea Melloni
    • 1
  • Jaroslav Čáp
    • 2
  • Jiří Petráćek
    • 2
  • Peter Bienstman
    • 3
  • Gino Priem
    • 3
  • Bjorn Maes
    • 3
  • Michele Lauritano
    • 4
  • Gaetano Bellanca
    • 4
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  2. 2.Institute of Physical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Department of Information TechnologyGhent UniversityGhentBelgium
  4. 4.Dipartimento di IngegneriaUniversitá di FerraraFerraraItaly

Personalised recommendations