Optical and Quantum Electronics

, Volume 38, Issue 4–6, pp 479–493 | Cite as

Spatiotemporal and Thermal Analysis of VCSEL for Short-range Gigabit Optical Links

  • A. Gholami
  • Z. Toffano
  • A. Destrez
  • M. Pez
  • F. Quentel
Article

Abstract

High-speed Optoelectronic Modules using Vertical Cavity Surface Emitting Lasers (VCSEL) coupled to Multi Mode Fibers (MMF) are a performing and low-cost solution for 10 Gigabit Ethernet (10 GbE) in short-distance optical links. A complete model of the spatiotemporal behavior of multimode VCSELs, through static and dynamic response, noise, thermal effects, and its coupling to MMF has been investigated. Relative Intensity Noise shows modal dependence and can be affected by spatial filtering due to coupling and fiber propagation. Simulations permit to evaluate critical parameters, such as modulation formats, launching conditions, and operating temperature for global bandwidth and eye diagram optimization up to 10 Gb/s. Simulation results are compared to measurements on prototype optoelectronic modules.

Keywords

fiber coupling Gigabit ethernet laser beams optical interconnections thermal modeling VCSEL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gustavsson, J.S.,  et al. 2004IEEE J. Quantum Elect40607CrossRefADSGoogle Scholar
  2. Hartog, A.H.,  et al. 1982IEEE J. Quantum Elect18825CrossRefADSGoogle Scholar
  3. Jungo, M., Erni, D., Baechtold, W. 2003IEEE J. Sel. Top. Quant. Elect9939CrossRefGoogle Scholar
  4. Kawano, K.,  et al. 1986IEEE J Light TechLT-4368CrossRefGoogle Scholar
  5. Law, J.Y.,  et al. 1997IEEE Photonics Tech. Lett.9437CrossRefGoogle Scholar
  6. Mena, P.V.,  et al. 1999IEEE J. Light Tech172612CrossRefGoogle Scholar
  7. Mieyeville, F.,  et al. 2001Sen Actuators A88209CrossRefGoogle Scholar
  8. Morikuni, J.J.,  et al. 1999IEEE J. Light Tech1795CrossRefGoogle Scholar
  9. Piprek, J. 2003Semiconductor Optoelectronic Devices – Introduction to Physics and SimulationAcademic PressSan Diego184186Google Scholar
  10. Raddatz, L.,  et al. 1997Electron. Lett.33232CrossRefGoogle Scholar
  11. Scott, J.W.,  et al. 1993IEEE J. Quantum Elect291295CrossRefADSGoogle Scholar
  12. Toffano, Z., A. Gholami et al. NUSOD ‘04, UCSB paper WC3 49–50, 2004.Google Scholar
  13. Toffano, Z.,  et al. 2003IEEE J. Sel. Top. Quant. Electron.9949CrossRefGoogle Scholar
  14. Valle, A.,  et al. 2001IEEE Photon Tech. Lett13272CrossRefGoogle Scholar
  15. Valle, A.,  et al. 2004IEEE J. Quantum Elect40597CrossRefADSGoogle Scholar
  16. Valle, A., Sarma, J., Shore, K.A. 1995aIEEE J. Quantum Elect311423CrossRefADSGoogle Scholar
  17. Valle, A., Sarma, J., Shore, K.A. 1995bJ. Opt. Soc. Am. B121741ADSCrossRefGoogle Scholar
  18. Webster, M.,  et al. 1999IEEE J. Light Tech171532CrossRefGoogle Scholar
  19. Zei, L.G.,  et al. 2001IEEE J. Light Tech19884CrossRefGoogle Scholar
  20. Zhang, H., Mrozynski, G., Wallrabenstein, A., Schrage, J. 2004IEEE J. Quantum Elect4018CrossRefMATHADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Gholami
    • 1
  • Z. Toffano
    • 1
  • A. Destrez
    • 1
  • M. Pez
    • 2
  • F. Quentel
    • 2
  1. 1.Telecommunication DepartmentSupelec (École Supérieure d’Électricité)Gif cedexFrance
  2. 2.D-LightsysOrsay CedexFrance

Personalised recommendations