Advertisement

Optical and Quantum Electronics

, Volume 38, Issue 1–3, pp 257–267 | Cite as

Effective Mode Volume of Nanoscale Plasmon Cavities

  • Stefan A. Maier
Article

Abstract

The controlled squeezing of electromagnetic energy into nanometric volumes via surface plasmon-polariton excitations in plasmonic nanoresonators is analyzed using the concept of an effective electromagnetic mode volume Veff, while taking careful account of the plasmon-polariton dispersion and the electromagnetic energy stored in the metal. Together with the quality factor Q of the cavity resonance, this enables a comparison with dielectric optical cavities, where Veff is limited by diffraction. For a Fabry–Perot type planar metallic cavity, a one-dimensional analytic model as well as a three-dimensional finite-difference time-domain simulation reveal that Veff is not bounded by diffraction, and that Q/Veff increases for decreasing cavity size. In this picture, matter–plasmon interactions can be quantified in terms of Q and Veff, and a resonant cavity model for the enhancement of spontaneous Raman scattering is presented.

Keywords

nanophotonics surface plasmon polaritons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreani, L.C., Panzarini, G., Gérard, J.-M. 1999Phys. Rev. B6013276CrossRefADSGoogle Scholar
  2. Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J. 2003Nature421925CrossRefADSGoogle Scholar
  3. Barnes, W.L. 1999J. Lightwave Tech.172170CrossRefADSGoogle Scholar
  4. Barnes, W.L., Dereux, A., Ebbesen, T. 2002Nature424824ADSGoogle Scholar
  5. Chang, R.K.Campillo, A.J. eds. 1996Optical Processes in MicrocavitiesWorld ScientificSingaporeGoogle Scholar
  6. Haus H.A. Waves and Fields in Optoelectronics. Prentice-Hall, first edition, Englewood Cliffs, New Jersey 07632: 1984.Google Scholar
  7. Hinds, E. 1994Pertubative cavity quantum electrodynamicsAcademic PressBoston156Google Scholar
  8. Joannopoulos, J.D., Meade, R.D., Winn, J.N. 1995Photonic CrystalsPrinceton University Press, PrincetonNew JerseyGoogle Scholar
  9. Johnson, P.B., Christy, R.W. 1972Phys. Rev. B64370CrossRefADSGoogle Scholar
  10. Kerker, M., Wang, D.-S., Chew, H. 1980Appl. Opt.194159ADSGoogle Scholar
  11. Kimble, H. 1994Structure and Dynamics in Cavity Quantum ElectrodynamicsAcademic PressBoston203266Google Scholar
  12. Klar, T., Perner, M., Grosse, S., Plessen, G., Spirkl, W., Feldmann, J. 1998Phys. Rev. Lett.804249CrossRefADSGoogle Scholar
  13. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S. 1997Phys. Rev. Lett.781667CrossRefADSGoogle Scholar
  14. Krenn, J.R., Dereux, A., Weeber, J.C., Bourillot, E., Lacroute, Y., Goudonnet, J.P., Schider, G., Gotschy, W., Leitner, A., Aussenegg, F.R., Girard, C. 1999Phys. Rev. Lett.822590CrossRefADSGoogle Scholar
  15. Krenn, J.R., Lamprecht, B., Ditlbacher, H., Schider, G., Salerno, M., Leitner, A., Aussenegg, F.R. 2002Europhys Lett.60663CrossRefADSGoogle Scholar
  16. Larkin I.A., Stockman M.I., Achermann M., Klimov V.I. (2004) Phys. Rev. B 69: 121403(R)Google Scholar
  17. Levi, A.F.J., McCall, S.L., Pearton, S.J., Logan, R.A. 1993IEE Elec. Lett.291666Google Scholar
  18. Loudon, R. 1970J. Phys A3233ADSGoogle Scholar
  19. Maier, S.A., Atwater, H.A. 2005J. Appl. Phys.98011101CrossRefADSGoogle Scholar
  20. Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., Atwater, H.A. 2001Adv. Mat.131501CrossRefGoogle Scholar
  21. Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., Requicha, A.A.G. 2003Nat. Mat.2229Google Scholar
  22. Matsko, A.B., Savchenkov, A.A., Letargat, R.J., Ilchenko, V.S., Maleki, L. 2003J. Opt. B: Quantum Semiclass. Opt.5272CrossRefADSGoogle Scholar
  23. Nie S.M., Emery S.R. 275(5303) 1102, 1997.Google Scholar
  24. Norris, D.J., Kuwata-Gonokami, M., Moerner, W.E. 1997Appl. Phys. Lett.71297CrossRefADSGoogle Scholar
  25. Ordal, M.A., Long, L.L., Bell, R.J., Bell, R.R., Alexander, R.W., Ward, C.A.. 1983Appl. Opt.221099ADSGoogle Scholar
  26. Painter, O., Lee, R.K., Yariv, A., Scherer, A., O’Brien, J.D., Dapkus, P.D., Kim, I. 1999Science2841819CrossRefGoogle Scholar
  27. Prade, B., Vinet, J.Y., Mysyrowicz, A. 1991Phys. Rev. B4413556CrossRefADSGoogle Scholar
  28. Purcell, E.M. 1946Phys. Rev.69681CrossRefGoogle Scholar
  29. Ruppin, R. 2002Phys. Lett. A299309CrossRefADSGoogle Scholar
  30. Spillane, S.M., Kippenberg, T.J., Vahala, K.J. 2002Nature415621CrossRefADSGoogle Scholar
  31. Takahara J., Yamagishi S., Taki H., Morimoto A., Kobayashi T. 22(7) 475Google Scholar
  32. Vernooy, D.W., Ilchenko, V.S., Mabuchi, H., Streed, E.W., Kimble, H.J. 1998Opt. Lett.23247ADSGoogle Scholar
  33. Vogel W., and D.-G. Welsch Lectures on Quantum Optics. Akademie Verlag GmbH, Berlin, Federal Republic of Germany, 1994.Google Scholar
  34. Vučković, J., Lončar, M., Scherer, A. 2000IEEE J. Quan. Elec.361131Google Scholar
  35. Xu, H., Aizpurua, J., Kaell, M., Apell, P. 2000Phys. Rev. E624318CrossRefADSGoogle Scholar
  36. Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L. 2004J. Opt. Soc. Am. A212442CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Centre for Photonics and Photonic Materials, Department of PhysicsUniversity of BathBathUK

Personalised recommendations