Optical and Quantum Electronics

, Volume 38, Issue 1–3, pp 19–34 | Cite as

Non-paraxial Split-step Finite-difference Method for Beam Propagation

Article

Abstract

A method based on symmetrized splitting of the propagation operator in the finite difference scheme for non-paraxial beam propagation is presented. The formulation allows the solution of the second order scalar wave equation without having to make the slowly varying envelope and one-way propagation approximations. The method is highly accurate and numerically efficient. Unlike most Padé approximant based methods, it is non-iterative in nature and requires less computation. The method can be used for bi-directional propagation as well.

Keywords

beam propagation finite difference method split-step method wide-angle method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.J. 1981An Introduction to Optical WaveguidesJohn WileyNew YorkGoogle Scholar
  2. Conte, S.D., deBoor, C. 1972Elementary Numerical AnalysisMcGraw-HillNew YorkGoogle Scholar
  3. Ghatak, A.K., Thyagarajan, K. 1998Introduction to Fiber OpticsUniversity PressCambridgeGoogle Scholar
  4. Hadley, G.R. 1992Opt. Lett171743ADSMathSciNetGoogle Scholar
  5. Ho, P.L., Lu, Y.Y. 2001IEEE Photon. Technol. Lett.131316Google Scholar
  6. Ilić, I., Scarmozzino, R., Osgood, R. 1996J. Lightwave Technol.142813ADSGoogle Scholar
  7. Khabaza, M. 1965Numerical AnalysisPergamon PressLondon, U.K5558Google Scholar
  8. Lu, Y.Y., Ho, P.L. 2002Opt. Lett.27683ADSGoogle Scholar
  9. Lu, Y.Y., Wei, S.H. 2002IEEE Photon. Technol. Lett.141533Google Scholar
  10. Luo, Q., Law, C.T. 2002IEEE Photon. Technol. Lett.1450Google Scholar
  11. Nolting, H.-P., März, R. 1995J. Lightwave Technol.13216CrossRefADSGoogle Scholar
  12. Sharma, A., Agrawal, A. 2004J. Opt. Soc. Am. A.211082CrossRefADSGoogle Scholar
  13. Sharma, A. and A. Agrawal. European Conference on Integrated Optics, Grenoble, France, April 5–8, 2005.Google Scholar
  14. Sharma, A., Agrawal, A. 2006IEEE Photon. Technol. Lett.18944946CrossRefGoogle Scholar
  15. Sharma, A. and S. Banerjee. J. Opt. Soc. Am. A 6 1884, 1989; Errata 7 2156, 1990.Google Scholar
  16. Sharma, A. In: Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices, ed. W.P. Huang. EMW Publishers, Cambridge, Massachussettes, pp. 143–198, 1995.Google Scholar
  17. Shibayama, J., Matsubara, K., Sekiguchi, M., Yamauchi, J., Nakano, H. 1999J. Lightwave Technol.17677CrossRefADSGoogle Scholar
  18. Sun, L., Yip, G.L. 1993Opt. Lett.181229ADSGoogle Scholar
  19. Yamauchi, J., Shibayama, J., Sekiguchi, M., Nakano, H. 1996IEEE Photon. Technol. Lett.81361ADSGoogle Scholar
  20. Yevick, D., Glasner, M. 1990Opt. Lett.15174ADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Physics DepartmentIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations