Optical and Quantum Electronics

, Volume 38, Issue 1–3, pp 133–148 | Cite as

Modelling of Photonic Wire Bragg Gratings

  • M. Gnan
  • G. Bellanca
  • H. M. H. Chong
  • P. Bassi
  • R. M. De La Rue


Some important properties of photonic wire Bragg grating structures have been investigated. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated – and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied – because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models.


finite-difference time-domain optical waveguide modelling photonic crystal photonic wire silicon on insulator waveguide grating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, R.U, Pizzuto, F., Camarda, G.S., Espinola, R.L., Rao, H., Osgood, R.M. 2002IEEE Photonics Technol. Lett.1465CrossRefGoogle Scholar
  2. Akahane, Y., Asano, T., Song, B.S, Noda, S. 2005Opt Expr.131202ADSGoogle Scholar
  3. Almeida, V.R, Barrios, C.A., Panepucci, R.R., Lipson, M. 2004Nature4311081CrossRefADSGoogle Scholar
  4. Bellanca G., Bassi P., Erbacci G. De Fabritiis G., Roccari R. Proceedings of the VII International Conference “Microwave and High Frequency Heating”, Valencia, 13–17 September 1999, 11, 1999.Google Scholar
  5. Bienstman, P., Baets, R. 2001Opt. Quant. Electron.33327CrossRefGoogle Scholar
  6. Chiang, K.S 1996IEEE Transactions on Microwave Theory and Techniques44692Google Scholar
  7. Čtyroký, J., Helfert, S., Pregla, R., Bienstman, P., Baets, R., Ridder, R., Stoffer, R., Klaasse, G., Petráček, J, Lalanne, P., Hugonin, J.P, Rue, R.M. 2002Opt. Quant. Electron.34455Google Scholar
  8. Englund, D., Fushman, I., Vučković, J. 2005Opt. Expr.135961ADSGoogle Scholar
  9. Espinola, R.L, Ahmad, R.U., Pizzuto, F., Steel, M.J, Osgood, R.M. 2001Opt. Expr.8517ADSGoogle Scholar
  10. Foresi, J.S, Kimerling, L.C., Villeneuve, P.R., Fan, S., Joannopoulos, J.D., Ippen, E.P., Ferrera, J., Thoen, E.R., Steinmeyer, G., Smith, H.I. 1997Nature390143ADSGoogle Scholar
  11. Han, Y.T, Shin, J.U., Kim, D.J., Park, S.H., Park, Y.J., Sun, H.K. 2003ETRI Journal25535Google Scholar
  12. Joannopoulos J.D, Meade R.D., Winn R.N. Photonic Crystals: Molding the Flow of Light 1995.Google Scholar
  13. Jugessur, A.S, Pottier, P., Rue, R.M. 2004Opt. Expr.121304ADSGoogle Scholar
  14. Kimerling, L.C., Dal Negro, L., Saini, S., Yi, Y., Ahn, D., Akiyama, S., Cannon, D., Liu, J., Sandland, J.G., Sparacin, D., Michel, J., Wada, K., Watts, M.R. 2004Silicon Photonics9489Google Scholar
  15. Knox, R.M. and P.P. Toulios. Proceedings on Symposium on Submillimeter Waves, Brooklyn, 497, 1970.Google Scholar
  16. Krauss, T.F., Vögele, B., Stanley, C.R., Rue, R.M. 1997IEEE Photonics Technol Lett.9176CrossRefGoogle Scholar
  17. Lalanne, P., Hugonin, J.P. 2003IEEE J Quantum Electron.391430CrossRefGoogle Scholar
  18. Noda, S., Imada, M., Okano, M., Ogawa, S., Mochizuki, M., Chutinan, A. 2002IEEE J Quantum Electron.38726CrossRefGoogle Scholar
  19. Palamaru, M., Lalanne, P. 2001Appl Phys. Lett.781466CrossRefADSGoogle Scholar
  20. Palik, E.D. 1998Handbook of optical constants of solidsAcademic PressSan DiegoGoogle Scholar
  21. Sauvan, C., Lecamp, G., Lalanne, P., Hugonin, J.P. 2005Opt Expr.13245ADSGoogle Scholar
  22. Taflove, A. 1995Computational electrodynamics – The Finite Difference Time-Domain MethodArtech HouseNorwoodGoogle Scholar
  23. Van Thourhout, D., P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, G. Priem and R. Baets. Proceedings on 31st European Conference on Optical Communications (ECOC), Glasgow, 25–29 September 2005, 2, 241, 2005.Google Scholar
  24. Zhao, C.Z., Li, G.Z., Liu, E.K., Gao, Y., Liu, X.D. 1995Appl. Phys. Lett.672448ADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. Gnan
    • 1
    • 4
  • G. Bellanca
    • 2
  • H. M. H. Chong
    • 1
  • P. Bassi
    • 3
  • R. M. De La Rue
    • 1
  1. 1.Optoelectronics Research Group, Department of Electronics and Electrical EngineeringThe UniversityGlasgowUK
  2. 2.Dipartimento di IngegneriaUniversity of FerraraFerraraItaly
  3. 3.Dipartimento di Elettronica Informatica e SistemisticaUniversity of BolognaBolognaItaly
  4. 4.Department of Electronics & Electrical EngineeringGlasgowUK

Personalised recommendations