Optical and Quantum Electronics

, Volume 37, Issue 13–15, pp 1415–1422 | Cite as

Semi-quantitative Surface Enhanced Raman Scattering Spectroscopic Creatinine Measurement in Human Urine Samples

  • Tsuei-Lian Wang
  • Huihua Kenny Chiang
  • Hui-Hsin Lu
  • Fang-Ying Peng
Article

Abstract

This paper presents the development of a semi-quantitative method of measuring the creatinine biomolecule in human urine by the surface enhanced Raman scattering (SERS) technique. Creatinine is one of the major components of urine and can be used to represent the metabolic and renal function of the human body. The Raman signal of creatinine is enhanced by 50 nm Au nanoparticles. Raman spectra between 1400 and 1500 cm−1 were analyzed to obtain the relationship between the SERS band area and creatinine concentration. The square of the correlation coefficient is 0.99 in artificial urine over the creatinine range 38.4–153.6 mg/dl. In a human urine experiment, a good linear correlation is observed over the creatinine concentration range 2.56–6.4 mg/dl. The square of correlation coefficient is 0.96.

Keywords

Au colloid creatinine Raman SERS urine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chowdhury, J., Ghosh, M. 2004J. Colloid Interface Sci.277121127CrossRefGoogle Scholar
  2. Dou, X., Yamaguchi, Y., Yammamoto, H., Doi, S., Ozaki, Y. 1996Vibrational spectrosc.1383CrossRefGoogle Scholar
  3. Dou, X., Yamaguchi, Y., Yammamoto, H., Doi, S., Ozaki, Y. 1997Vibrational Spectrosc.14199CrossRefGoogle Scholar
  4. Futamata M., Maruyama Y. and Ishikawa M. Vibrational Spectrosc. 30 2002.Google Scholar
  5. Haaland, D.M., Jones, H.D.T., Thomas, E.V. 1997Appl. Spectrosc.51340CrossRefADSGoogle Scholar
  6. He M.F. Clinical Chemistry P. 289 Ho-chi, Tawain; 2000.Google Scholar
  7. Kneipp, K., Kneipp, H., Manohsran, R., Hanlon, E.B., Itxkan, I., DasaRi, R.R., Feld, M.S. 1998Appl. Spectrosc.521493CrossRefADSGoogle Scholar
  8. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R, Feld, M.S. 1999Chem. Rev.992957CrossRefGoogle Scholar
  9. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., Feld, M.S. 2002J. Phys. Condens. Matter14R597CrossRefADSGoogle Scholar
  10. Martens, H., Næs, T. 1996Multivariate Calibration2WielyNew YorkGoogle Scholar
  11. McCreery, R.L. 2000Raman Spectroscopy for Chemical AnalysisWiley InterscienceNew YorkGoogle Scholar
  12. McMurdy, J.W.,III, Berger, A.J. 2003Appl. Spectrosc.57522Google Scholar
  13. Premasiri, W.R., Clarke, R.H., Womble, M.E. 2001Lasers Surg. Med.28330CrossRefGoogle Scholar
  14. Shadi, I.T., Chowdhry, B.Z., Snowden, M.J., Withnall, R. 2003Spectrochim Acta Part A5922132220Google Scholar
  15. Shafer-Peltier K.E., Haynes C.L., Glucksberg M.R., Duyne R.V. J. Am. Chem. Soc 588, 2003.Google Scholar
  16. Vo-Dinh, T. 1998Trends Anal. Chem.17557CrossRefGoogle Scholar
  17. Yonzon, C.R., Haynes, C.L., Zhang, X., Walsh, J.T., Duyne, Richard P.,Jr. 2004Anal. Chem7678CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Tsuei-Lian Wang
    • 1
  • Huihua Kenny Chiang
    • 1
  • Hui-Hsin Lu
    • 1
  • Fang-Ying Peng
    • 1
  1. 1.Institute of Biomedical EngineeringNational Yang-Ming UniversityTaipeiR.O.C

Personalised recommendations