Optical and Quantum Electronics

, Volume 37, Issue 13–15, pp 1397–1408 | Cite as

Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light

  • Takeshi Yasui
  • Kunihiko Sasaki
  • Yoshiyuki Tohno
  • Tsutomu Araki
Article

Abstract

We propose a nonlinear optical probe method to image the distribution of collagen fiber orientation in human tissue by measuring the polarization of collagen-induced second-harmonic-generation (SHG) light (SHG polarimetry). Depth-resolved SHG polarimetry, with a depth resolution of 14 μm, was used to evaluate the cross-sectional profile of collagen fiber orientation in Achilles tendon and dentin, revealing a characteristic distribution of collagen orientation along the depth direction. We evaluated the two-dimensional (2D) lateral distribution of collagen fiber orientation in back reticular dermis and anklebone by polarization-resolved SHG imaging, and confirmed an appreciable difference in the distribution profiles of the two samples. We further extended the method to a depth-resolved measurement of the three-dimensional (3D) distribution of collagen orientation in anklebone. The proposed system promises to be a powerful tool for in vivo measurement of collagen fiber orientation in human tissue.

Keywords

collagen femtosecond laser orientation polarimetry second-harmonic-generation tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Centonze, V.E., White, J.G. 1998Biophys J.752015Google Scholar
  2. Cox, G., Kable, E., Jones, A., Fraser, I., Manconi, F., Gorrell, M.D. 2003J. Struct. Biol.14153CrossRefGoogle Scholar
  3. Denk, W., Strickler, J.H., Webb, W.W. 1990Science24873ADSGoogle Scholar
  4. Dong, C.-Y., Koenig, K., So, P. 2003J. Biomed. Opt.8450CrossRefGoogle Scholar
  5. Dunn, A.K., Wallace, V.P., Coleno, M., Berns, M.W., Tromberg, B.J. 2000Appl. Opt.391194ADSGoogle Scholar
  6. Fine, S., Hansen, W.P. 1971Appl Opt.102350ADSGoogle Scholar
  7. Han, M., Giese, G., Bille, J.F. 2005Opt. Express.135791http://www.opticsexpress.org/abstract.cfm? URI=OPEX-13-15-5791ADSGoogle Scholar
  8. Hashimoto, M., Araki, T., Kawata, S. 2000Opt. Lett.251768ADSGoogle Scholar
  9. König, K., Riemann, I. 2003J. Biomed. Opt.8432Google Scholar
  10. Langton C.M., Njeh C.F. In: The Physical Measurement of Bone, Institute of Physics Publishing, London, 11, 2004.Google Scholar
  11. Roth, S., Freund, I. 1979J. Chem. Phys.701637CrossRefADSGoogle Scholar
  12. Stoller, P., Reiser, K.M., Celliers, P.M., Rubenchik, A.M. 2002Biophys. J.823330Google Scholar
  13. Yasui T., Shimabayashi K., Tohno Y., Araki T. In: The 5th Pacific Rim Conference on Lasers and Electro-Optics CLEO, Proc. The 5th Pacific Rim Conference on Lasers and Electro-Optics, TaiPei, 15–19 December 2003, 361, 2003.Google Scholar
  14. Yasui, T., Tohno, Y., Araki, T. 2004aAppl. Opt.432861CrossRefADSGoogle Scholar
  15. Yasui, T., Tohno, Y., Araki, T. 2004bJ. Biomed. Opt.9259CrossRefADSGoogle Scholar
  16. Yeh, A.T., Nassif, N., Zoumi, A., Tromberg, B.J. 2002Opt. Lett.272082ADSGoogle Scholar
  17. Yelin, D., Silberberg, Y. 1999Opt. Express.5169http://www.opticsexpress.org/abstract.cfm? URI=OPEX-5-8-169ADSGoogle Scholar
  18. Yoshiki, K., Hashimoto, M., Araki, T. 2005Jpn. J. Appl. Phys.44L1066CrossRefGoogle Scholar
  19. Zumbusch, A., Holtom, G.R., Xie, X.S. 1999Phys Rev Lett.824142CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Takeshi Yasui
    • 1
  • Kunihiko Sasaki
    • 1
  • Yoshiyuki Tohno
    • 2
  • Tsutomu Araki
    • 1
  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.1st Department of AnatomyNara Medical UniversityKashiharaJapan

Personalised recommendations