Optical and Quantum Electronics

, Volume 37, Issue 1–3, pp 331–341

Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

  • Dmitry N. Chigrin
  • Andrei V. Lavrinenko
  • Clivia M. Sotomayor Torres


We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces.

Key words

directional couplers nanoscale photonics photonic crystal waveguides transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2005

Authors and Affiliations

  • Dmitry N. Chigrin
    • 1
  • Andrei V. Lavrinenko
    • 2
  • Clivia M. Sotomayor Torres
    • 3
  1. 1.Institute of PhysicsUniversity of BonnGermany
  2. 2.Research Center COMTechnical University of DenmarkDenmark
  3. 3.NMRCUniversity College CorkIreland

Personalised recommendations