Optical and Quantum Electronics

, Volume 37, Issue 1–3, pp 331–341 | Cite as

Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

  • Dmitry N. Chigrin
  • Andrei V. Lavrinenko
  • Clivia M. Sotomayor Torres

Abstract

We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces.

Key words

directional couplers nanoscale photonics photonic crystal waveguides transmission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aslund, M., Canning, J., Poladian, L., Martjin de Sterke, C., Judge, A. 2003Appl. Opt426578PubMedGoogle Scholar
  2. Boscolo, S., Midrio, M., Somedo, C.G. 2002IEEE J. Quantum Electron3847Google Scholar
  3. Chigrin, D.N., Lavrinenko, A.V., Sotomayor Torres, C.M. 2004Opt. Express12617Google Scholar
  4. Coldren, L.A., Corzine, S.W. 1995Diode Lasers and Photonic Integrated CircuitsJohn WileyNew YorkGoogle Scholar
  5. Fan, S., Winn, J., Devenyi, A., Chen, J.C., Meade, R.D., Joannopoulos, J.D. 1995J. Opt. Soc. Amer. B121267Google Scholar
  6. Guttroff, G., Bayer, M., Reithmaier, J.P., Forchel, A., Knipp, P.A., Reinecke, T.L. 2001Phys. Rev. B64155313Google Scholar
  7. Johnson, J.C., Yan, H.Q., Schaller, R.D., Haber, L.H., Saykally, R.J., Yang, P.D. 2001aJ. Phys. Chem. B10511387Google Scholar
  8. Johnson, S.G., Joannopoulos, J.D. 2001bOpt. Express8173Google Scholar
  9. Lavrinenko, A., Borel, P.I., Fradsen, L.H., Thorhauge, M., Harpoth, A., Kristensen, M., Niemi, T. 2004Opt. Express12234Google Scholar
  10. Martinez, A., Cuesta, F., Marti, J. 2003IEEE Photon. Technol. Lett15694Google Scholar
  11. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E., Ryu, H-Y. 2004Opt. Express121551Google Scholar
  12. Obert, M., Wild, B., Bacher, G., Forchel, A., Andre, R., Le Si Dang,  2002Appl. Phys. Lett801322Google Scholar
  13. Perroni, G., Laurenzanno, M., Montrosset, I. 2001IEEE J. Lightwave Technol191943Google Scholar
  14. Poborchii, V., Tada, T., Kanayama, T.J. 2002Appl. Phys913299Google Scholar
  15. Qiu, M., Swillo, M. 2003aPhotonics Nanostruct. – Fundam. Appl123Google Scholar
  16. Qiu, G., Lin, F., Li, Y.P 2003bOpt. Commun219285Google Scholar
  17. Sugimoto, Y., Tanaka, Y., Ikeda, N., Yang, T., Nakamura, H., Asakawa, K., Inoue, K. 2004Opt. Express121090Google Scholar
  18. Sugimoto, Y., Tanaka, Y., Ikeda, N., Yang, T., Nakamura, H., Asakawa, K., Inoue, K., Maruyama, T., Miyashita, K., Ishida, K., Watanabe, Y. 2003Appl. Phys. Lett833236Google Scholar
  19. Zimmermann, J., Kamp, M., Forchel, A., Marz, R. 2004Opt. Commun230387Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Dmitry N. Chigrin
    • 1
  • Andrei V. Lavrinenko
    • 2
  • Clivia M. Sotomayor Torres
    • 3
  1. 1.Institute of PhysicsUniversity of BonnGermany
  2. 2.Research Center COMTechnical University of DenmarkDenmark
  3. 3.NMRCUniversity College CorkIreland

Personalised recommendations