Optical and Quantum Electronics

, Volume 36, Issue 15, pp 1335–1351

Phase modulations due to collisions of beam pairs in nonlocal nonlinear media



In this paper, discussed is the evolution of two co-propagating optical beams in parallel in nonlocal Kerr media, governed by the nonlocal nonlinear Schrödinger equation (NNLSE). A simplified model to the NNLSE is presented when the media is strongly nonlocal, which is a bridge between the Snyder–Mitchell model (Snyder and Mitchell Science276 1538, 1997) and the strongly-nonlocal model (Guo, Luo, Yi, Chi, and Xie Phys. Rev. E.69 016602, 2004). It is found that when one of the soliton beams is much stronger than the other, the weaker (probe beam) can experience $\pi $ nonlinear phase shift, which can be modulated by the stronger (pump beam), within a rather short propagation distance (about 40-μm). The comparisons of analytical solutions of the model with numerical simulations of the NNLSE show that the model is of excellent accuracy in the case of strong nonlocality.


interaction of spatial solitons nonlocal nonlinear media phase modulation strong nonlocal spatial soliton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J.S., Weiner, A.M., Silberberg, Y., Oliver, M.K., Jackel, J.L., Leaird, D.E., Vogel, E.M., Smith, P.W. 1990Opt. Lett.15471Google Scholar
  2. Assanto, G., M. Peccianti and C. Conti. Optics Photonics News. 45, 2003.Google Scholar
  3. Bang, O., Krolikowski, W., Wyller, J., Rasmussen, J.J. 2002Phys. Rev. E.66046619Google Scholar
  4. Conti, C., Peccianti, M., Assanto, G. 2003Phys. Rev. Lett.91073901Google Scholar
  5. Conti, C., Peccianti, M., Assanto, G. 2004Phys. Rev. Lett.92113902Google Scholar
  6. Granot, E., Sternklar, S., Isbi, Y., Malomed, B., Lewis, A. 1999Opt. Commun.166121Google Scholar
  7. Guo, Q. In: Proceedings on Optical Transmission, Switching, and Subsystems, eds. C. F. Lam, C. Fan, N. Hanik and K. Oguchi. Proc. SPIE (Asia-Pacific Optical and Wireless Communications Conference, November 2–6, Wuhan, P.R.China 2003). 5281 581 2004a.Google Scholar
  8. Guo, Q., Luo, B., Yi, F.H., Chi, S., Xie, Y.Q. 2004bPhys. Rev. E.69016602Google Scholar
  9. Krolikowski, W., Bang, O. 2001aPhys. Rev. E.63016610Google Scholar
  10. Krolikowski, W., Bang, O., Rasmussen, J.J., Wyller, J. 2001bPhys. Rev. E.64016612Google Scholar
  11. Mitchell, D.J., Snyder, A.W. 1999J. Opt. Soc. Am. B.16236Google Scholar
  12. Nikolov, N.I., Neshev, D., Krolikowski, W., Bang, O., Rasmussen, J.J., Christiansen, P.L. 2004Opt. Lett.29286Google Scholar
  13. Nikolov, N.I., Neshev, D., Bang, O., Krolikowski, W. 2003Phys. Rev. E.68036614Google Scholar
  14. Peccianti, M., Rossi, A.D., Assanto, G., Luca, A.D., Umeton, C., Khoo, I.C. 2000Appl. Phys. Lett.777Google Scholar
  15. Peccianti, M., Conti, C., Assanto, G., Luca, A.D., Umeton, C. 2002aAppl. Phys. Lett.813335Google Scholar
  16. Peccianti, M., Brzdakiewica, K.A., Assanto, G. 2002bOpt. Lett.271460Google Scholar
  17. Shen, Y.R. 1997Science2761520Google Scholar
  18. Snyder, A.W, Mitchell, D.J. 1997Science2761538Google Scholar
  19. Snyder, A.W, Kivshar, Y.S. 1997J. Opt. Soc. Am. B.143025Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratory of Light Transmission OpticsSouth China Normal UniversityGuangzhouP.R. China

Personalised recommendations