Optical and Quantum Electronics

, Volume 37, Issue 1–3, pp 213–228 | Cite as

3D-Scalar Fourier Eigenvector Expansion Method (Fourier-EEM) for analyzing optical waveguide discontinuities

  • A. Ortega-Moñux
  • I. Molina-fernández
  • J. G. Wangüemert-pérez
Article

Abstract

In this paper we propose a Fourier Eigenvector Expansion Method (Fourier-EEM) with coordinate-stretching type PML absorbing boundary conditions. This technique has been used to analyze, under the scalar assumption, 3D optical devices with abrupt discontinuities in the longitudinal direction (i.e. Multimode Interference devices (MMI)). The obtained results clearly confirm the accuracy and efficiency of the proposed approach to calculate the transmission and reflection characteristics of photonic devices.

Keywords

beam propagation method discontinuities Fourier series eigenvector expansion method perfectly matched layers photonics devices MMI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenger, J.P. 1994J Comput Phys114185Google Scholar
  2. Bienstman, P., Baets, R 2002IEE Proc Optoelectron149161Google Scholar
  3. Chew, W.C., Weedon, W.H. 1994Microwave Opt Technol Lett7599Google Scholar
  4. Chung, Y., Dagli, N. 1990IEEE J Quantum Electron261335Google Scholar
  5. D’Orazio, A., Sario, M., Petruzzelli, V., Prudenzano, F. 2003Opt Quantum Electron35629Google Scholar
  6. Hadley, G.R. 1992IEEE J Quantum Electron28363Google Scholar
  7. Helfert, S.F. 2004Opt Quantum Electron3687Google Scholar
  8. Gerdes, J., Lunita, B., Venís, D., Pregla, R. 1992Electron Lett281013Google Scholar
  9. Helfert, S.F., Pregla, R. 2002Electromagnetics22615Google Scholar
  10. Imtaar, M., Al-Bader, J. 1995J Lightwave Technol13137Google Scholar
  11. Kawano, K., Kitoh, T., Kohtoku, M., Ito, T., Hasumi, Y. 1998IEEE Photon Technol Lett10244Google Scholar
  12. Koch, T.B., Davies, J.B., Wickramasinghe, D. 1989Electron Lett25514Google Scholar
  13. Lee, P.C., Schulz, D., Voges, E. 1992IEEE J Lightwave Technol101832Google Scholar
  14. Ortega-Moñux, A., Wangüemert-Perez, J.G., Molina-Fernandez, I. 2003J Opt Soc Am A20557Google Scholar
  15. Marcuse, D. 1992IEEE J Lightwave Technol28459Google Scholar
  16. März, Reinhard. In: Integrated Optics: Design and Modelling, Artech House INC, Norwood, 1995.Google Scholar
  17. Molina-Fernández, I., Wangüemert-Pérez, J.G. 1998IEEE J Lightwave Technol161354Google Scholar
  18. Pennings, E.C., Roijen, R., Stralen, M.J.N., Waard, P.J., Koumans, R.G.M.P., Verbeek, B.H. 1994IEEE Photon Technol Lett6715Google Scholar
  19. Pregla R., Pascher W. (1989). In: Numerical Techniques for Microwave and Millimeter Wave Passive Structures, (ed. T. Itoh) p. 381. John Wiley Publ., New York, USA, 1989.Google Scholar
  20. Rogge, U., Pregla, R. 1993IEEE J Lightwave Technol112015Google Scholar
  21. Rushan, C., Yung, E.K.N., Wu, K., Han, Y.F. 1999Microwave Opt Technol Lett20339Google Scholar
  22. Scarmozzino, R., Gopinath, A., Pregla, R., Helfert, S. 2000IEEE Select Topics Quantum Electron6150Google Scholar
  23. Shibata, Y., Oku, S., Yamamoto, M., Naganuma, M. 2002IEE Proc Optoelectron149217Google Scholar
  24. Wangüemert-Pérez, J.G., Molina-Fernández, I. 2001IEEE J Lightwave Technol191614Google Scholar
  25. Wangüemert-Pérez, J.G., Molina-Fernández, I., Luque-Nieto, M.A. 2004Opt Quantum Electron36285Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Ortega-Moñux
    • 1
  • I. Molina-fernández
    • 1
  • J. G. Wangüemert-pérez
    • 1
  1. 1.Departamento de Ingeniería de ComunicacionesMálagaSpain

Personalised recommendations