Optical and Quantum Electronics

, Volume 37, Issue 1–3, pp 107–119 | Cite as

Fourier modal methods for modeling optical dielectric waveguides

  • J. P. Hugonin
  • P. Lalanne
  • I. Del. Villar
  • I. R. Matias
Article

Abstract

This work contains new materials relative to the use of Fourier expansion techniques, also called plane-wave expansion techniques, for modelling normal modes of optical waveguides. Two rigorous fully vectorial methods are presented and benchmarked for a classical rib waveguide geometry well studied in the literature. The first method relies on a pole extraction and on a one-dimensional expansion scheme. A four-digit accuracy for the normalized propagation constant B is obtained for the dominant TE and TM modes of the benchmark problem and for a small number of retained Fourier harmonics. Better accuracy is anticipated for larger truncation ranks. The second method relies on a two-dimensional expansion scheme in Fourier space and provides a three-digit accuracy for the normalized propagation constant.

Keywords

electromagnetic theory Fourier expansion techniques optical mode solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bienstman, P. 2004Opt. Quantum Electron365CrossRefGoogle Scholar
  2. Bérenger, J.P. 1994J. Comput. Phy114185CrossRefGoogle Scholar
  3. Cao, Q., Lalanne, P., Hugonin, J.P. 2002J. Opt. Soc. Am. A19335Google Scholar
  4. Château, N., Hugonin, J.P. 1994J. Opt. Soc. Am. A111321Google Scholar
  5. Chew, W.C., Weedon, W.H. 1994Microwave Opt. Technol. Lett7599Google Scholar
  6. Cotter, N.P.K., Preist, T.W., Sambles, J.R. 1995J. Opt. Soc. Am. A121097Google Scholar
  7. Chiang, K.S. 1994Opt. Quantum Electron26S113Google Scholar
  8. Ctyroky, J., Helfert, S., Pregla, R., Bienstman, P., Baets, R., Ridder, R., Stoffer, R., Klaasse, G., Petracek, J., Lalanne, P., Hugonin, J.P., DeLa Rue, R.M. 2002Opt. Quantum Electron34455Google Scholar
  9. Gaylord, T.K., Moharam, M.G. 1985Proc. IEEE73894Google Scholar
  10. Granet, G., Guizal, B. 1996J. Opt. Soc. Am. A131019Google Scholar
  11. Granet, G. 1999J. Opt. Soc. Am. A162510Google Scholar
  12. Helfert, S.F., Pregla, R. 1996J. Lightwave Technol142414Google Scholar
  13. Henry, C.H., Bart, H.V. 1989J. Lightwave Technol7308Google Scholar
  14. Hewlett, S.J., Ladouceur, F. 1995J. Lightwave Technol13375Google Scholar
  15. Ho, K.M., Chan, C.T., Soukoulis, C.M. 1990Phys. Rev. Lett653152PubMedGoogle Scholar
  16. Hoekstra, H.J.W.M., Krijnen, G.J.M., Lambeck, P.V. 1992J. Lightwave Technol101352Google Scholar
  17. Knop, K. 1978J. Opt. Soc. Am. A681206Google Scholar
  18. Ladouceur, F. 1996Opt. Lett214Google Scholar
  19. Lalanne, P., Morris, G.M. 1996J. Opt. Soc. Am. A13779Google Scholar
  20. Lalanne, P. 1998Phys. Rev. B589801Google Scholar
  21. Lalanne, P., Jurek, M.P. 1998J. Mod. Opt451357Google Scholar
  22. Lalanne, P., Silberstein, E. 2000Opt. Lett251092Google Scholar
  23. Lalanne, P. 2002IEEE J. Quant. Electron38800Google Scholar
  24. Lalanne, P., Mias, S., Hugonin, J.P. 2004Opt Exp12458Google Scholar
  25. Lalanne, P., Hugonin, J.P., Gérard, J.M. 2004Appl. Phys. Lett844726Google Scholar
  26. Li, L., Haggans, C.W. 1993J. Opt. Soc. Am. A101184Google Scholar
  27. Li, L. 1996J. Opt. Soc. Am. A131870Google Scholar
  28. Li, L. 1997J. Opt. Soc. Am. A142758Google Scholar
  29. Li, Z.Y., Ho, K.M. 2004Phys. Rev. Lett93063904Google Scholar
  30. Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K. 1995J. Opt. Soc. Am. A121068Google Scholar
  31. Nevière, M., Vincent, P., Petit, R., Cadilhac, M. 1973Opt. Comm948Google Scholar
  32. Popov, E. 1993Prog. Opt31141187Google Scholar
  33. Popov, E., Nevière, M. 2000J. Opt. Soc. Am. A171773Google Scholar
  34. Sauvan, C., Lalanne, P., Rodier, J.C., Hugonin, J.P., Talneau, A. 2003IEEE Photon. Technol. Lett151243Google Scholar
  35. Scarmozzino, R., Gopinath, A., Pregla, R., Helfert, S. 2000IEEE J. Sel. Top. Quantum Electron6150Google Scholar
  36. Silberstein, E., Lalanne, P., Hugonin, J.P., Cao, Q. 2001J. Opt. Soc. Am. A182865Google Scholar
  37. Sudbø, A.S. 1993J. Europ. Opt. Soc. A, Pure Appl. Opt2211Google Scholar
  38. Tervo, J., Kuittinen, M., Vahimaa, P., Turunen, J., Aalto, T., Heimala, P., Leppihalme, M. 2001Opt. Comm198265Google Scholar
  39. Vallius, T., Honkanen, M. 2002Opt. Exp1024Google Scholar
  40. Vassallo, C. 1997Opt. Quantum Electron2995Google Scholar
  41. Villeneuve, P.R., Piché, M. 1994J. Mod. Opt41241Google Scholar
  42. Wangüemert-Pérez, J.G., Molina-Fernandez, I., Luque-Nieto, M.A. 2004Opt. Quantum Electron36285Google Scholar
  43. Welsshar, A., Li, J., Gallawa, R.L., Goyal, I.C., Tu, Y., Ghatak, K. 1995IEEE J. Lightwave Technol131795Google Scholar
  44. Yeh, P. 1998Optical Waves in Layered Media, Chap 11WileyNew YorkGoogle Scholar
  45. Zhang, Z., Satpathy, S. 1990Phys. Rev. Lett652650PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. P. Hugonin
    • 1
  • P. Lalanne
    • 1
  • I. Del. Villar
    • 2
  • I. R. Matias
    • 2
  1. 1.Laboratoire Charles Fabry de l’Institut d’Optique, Centre National de la Recherche ScientifiqueUniversité Paris Sud BâtOrsay CedexFrance
  2. 2.Departamento de Ingeniería Eléctrica y ElectrónicaUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations