Advertisement

Direct plastic structural design under lognormally distributed strength by chance constrained programming

  • Ngọc Trình Trần
  • Manfred StaatEmail author
Research Article
  • 17 Downloads

Abstract

We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.

Keywords

Limit analysis Shakedown analysis Primal dual programming Stochastic programming Chance constrained programming Reliability 

Notes

References

  1. Belytschko T (1972) Plane stress shakedown analysis by finite element. Int J Mech Sci 14(9):619–625.  https://doi.org/10.1016/0020-7403(72)90061-6 CrossRefGoogle Scholar
  2. Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79.  https://doi.org/10.1287/mnsc.6.1.73 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Charnes A, Cooper WW (1962) Chance-constrained and normal deviates. J Am Statist Assoc 57(279):134–148.  https://doi.org/10.1080/01621459.1962.10482155 CrossRefzbMATHGoogle Scholar
  4. Cobb B, Rumí R, Salmerón A (2012) Approximating the distribution of a sum of log-normal random variables. In: Proceedings of the sixth european workshop on probabilistic graphical models (PGM’2012), Granada, Spain, pp. 67-74. http://leo.ugr.es/pgm2012/proceedings/eproceedings/cobb_approximating.pdf. Accessed 19–21 Sept 2012
  5. Corradi L, Zavelani A (1974) A linear programming approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 3(1):37–53.  https://doi.org/10.1016/0045-7825(74)90041-3 MathSciNetCrossRefGoogle Scholar
  6. Ellis JH, Zimmerman JJ, Corotis RB (1991) Stochastic programs for identifying critical structural collapse mechanisms. Appl Math Modell 15:367–373.  https://doi.org/10.1016/0307-904X(91)90062-T CrossRefzbMATHGoogle Scholar
  7. Fenton LF (1960) The sum of lognormal probability distributions in scatter transmission systems. IRE Trans Commun Syst 8(1):57–67.  https://doi.org/10.1109/TCOM.1960.1097606 CrossRefGoogle Scholar
  8. Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Meth Eng 63:1174–1202.  https://doi.org/10.1002/nme.1316 CrossRefzbMATHGoogle Scholar
  9. Gaydon FA, McCrum AW (1954) A theoretical investigation of the yield point loading of a square plate with a central circular hole. J Mech Phys Solids 2:156–169.  https://doi.org/10.1016/0022-5096(54)90022-8 CrossRefGoogle Scholar
  10. Genna F (1988) A non-linear inequality, finite element approach to the direct computation of the shakedown load safety factor. Int J Mech Sci 30:769–789.  https://doi.org/10.1016/0020-7403(88)90041-0 CrossRefzbMATHGoogle Scholar
  11. Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci 39(4):417–433.  https://doi.org/10.1016/S0020-7403(96)00039-2 CrossRefzbMATHGoogle Scholar
  12. Heitzer M, Staat M (2000) Reliability analysis of elasto-plastic structures under variable loads. In: Maier G, Weichert D (eds) Inelastic analysis of structures under variable loads: theory and engineering applications. Kluwer, Dordrecht, pp 269–288.  https://doi.org/10.1007/978-94-010-9421-4_17
  13. Heitzer M, Staat M (2002) Limit and shakedown analysis with uncertain data. In: Marti K (ed) Lecture notes in economics and mathematical systems (LNEMS), stochastic optimization techniques, numerical methods and technical applications, vol 513. Springer, Heidelberg, pp 253–267Google Scholar
  14. Heitzer M, Staat M (2003) Basis reduction technique for limit and shakedown problems. In: Staat M, Heitzer M (eds) Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach, vol 15. Part I. NIC Series. John von Neumann Institute for Computing, Jülich, pp 1–55. http://hdl.handle.net/2128/2926
  15. Heitzer M, Pop G, Staat M (2000) Basis reduction for the shakedown problem for bounded kinematic hardening material. J Global Optim 17(1–4):185–200.  https://doi.org/10.1023/A:1008321026063 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kataoka S (1963) Stochastic programming model. Econometrica 31(1–2):181–196.  https://doi.org/10.2307/1910956 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kolbin VV (1977) Stochastic Programming. D. Reidel. Dordrecht, BostonCrossRefGoogle Scholar
  18. Li Pu, Arellano-Garcia H, Wozny G (2008) Chance constrained programming approach to process optimization under uncertainty. Comput Chem Eng 32(1–2):25–45.  https://doi.org/10.1016/j.compchemeng.2007.05.009 CrossRefGoogle Scholar
  19. Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC, Boca Raton.  https://doi.org/10.1201/EBK1439820278 CrossRefGoogle Scholar
  20. Lyamin AV, Sloan SW (2002) Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng 55:573–611.  https://doi.org/10.1002/nme.511 CrossRefzbMATHGoogle Scholar
  21. Madsen HO, Krenk S, Lind NC (2006) Methods of structural safety. 2nd edn. Dover, Mineola, New YorkGoogle Scholar
  22. Makrodimopoulos A, Bisbos C (2003) Shakedown analysis of plane stress problems via SOCP. In: Staat M, Heitzer M (eds) Numerical methods for limit and shakedown analysis. Deterministic and probabilistic approach, vol 15. Part VI. NIC Series. John von Neumann Institute for Computing, Jülich, pp 185–216Google Scholar
  23. Mehta N, Wu J, Molisch A, Zhang J (2007) Approximating a sum of random variables with a lognormal. IEEE Trans Wireless Commun 6(7):2690–2699.  https://doi.org/10.1109/TWC.2007.051000 CrossRefGoogle Scholar
  24. Pham PT, Staat M (2014) FEM-based shakedown analysis of hardening structures. Asia Pacific J Comput Eng 1(1):1–13.  https://doi.org/10.1186/2196-1166-1-4 CrossRefGoogle Scholar
  25. Proske D (2018) Bridge collapse frequencies versus failure probabilities. Springer, Cham.  https://doi.org/10.1007/978-3-319-73833-8 CrossRefGoogle Scholar
  26. Rao SS (2009) Engineering optimization. Theory and practice, 4th edn. Wiley, Hoboken.  https://doi.org/10.1002/9780470549124 CrossRefGoogle Scholar
  27. Sikorski KA, Borkowski A (1990) Ultimate load analysis by stochastic programming. In: Smith DL (ed) Mathematical Programming Methods in Structural Plasticity. International Centre for Mechanical Sciences, vol 299. Springer, Wien, New York, pp 403–424.  https://doi.org/10.1007/978-3-7091-2618-9_20
  28. Simon JW, Weichert D (2012) Shakedown analysis of engineering structures with limited kinematical hardening. Int J Solids Struct 49:2177–2186.  https://doi.org/10.1016/j.ijsolstr.2012.04.039 CrossRefGoogle Scholar
  29. Staat M (2004) Limit and shakedown analysis under uncertainty. Int J Comput Methods 11(2):1343008.  https://doi.org/10.1142/S0219876213430081 MathSciNetzbMATHGoogle Scholar
  30. Staat M, Heitzer M (eds) (2003a) Probabilistic limit and shakedown problems. In: Numerical methods for limit and shakedown analysis. Deterministic and probabilistic approach. Part VII. NIC series vol. 15. John von Neumann Institute for Computing, Jülich, pp 217–268. http://hdl.handle.net/2128/2926
  31. Staat M, Heitzer M (eds) (2003b) Numerical methods for limit and shakedown analysis. deterministic and probabilistic approach. NIC Series vol. 15. John von Neumann Institute for Computing, Jülich. http://hdl.handle.net/2128/2926
  32. Thoft-Cristensen P, Baker MJ (1982) Structural reliability theory and its applications. Springer, BerlinCrossRefGoogle Scholar
  33. Tin-Loi F, Wei Z (1999) Elastoplastic analysis of structures under uncertainty: model and solution methods. Numer Funct Anal Optim 20(3–4):353–365.  https://doi.org/10.1080/01630569908816897 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Tin-Loi F, Qi L, Wei Z, Womersley RS (1996) Stochastic ultimate load analysis: models and solution methods. Numer Funct Anal Opt 17(9–10):1029–1043.  https://doi.org/10.1080/01630569608816740 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Tran TN, Staat M (2015) Uncertain multimode failure and shakedown analysis of shells. In: Fuschi P, Pisano AA, Weichert D (eds) Direct methods for limit and shakedown analysis of structures, Chap. 14. Springer, Cham, pp 279–298.  https://doi.org/10.1007/978-3-319-12928-0_14 Google Scholar
  36. Trần TN, Staat M (2013) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures under uncertainties. In: de Saxcé G, Oueslati A, Charkaluk E, Tritsch JB (eds) Limit states of materials and structures: direct methods, vol 2. Springer, Dordrecht, pp 89–102.  https://doi.org/10.1007/978-94-007-5425-6_5 CrossRefGoogle Scholar
  37. Tran TN, Kreißig R, Staat M (2009) Probabilistic limit and shakedown analysis of thin plates and shells. Struct Saf 31(1):1–18.  https://doi.org/10.1016/j.strusafe.2007.10.003 CrossRefGoogle Scholar
  38. Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal–dual shakedown analysis of structures. Int J Numer Meth Eng 82(7):917–938.  https://doi.org/10.1002/nme.2804 MathSciNetzbMATHGoogle Scholar
  39. Trần TN, Phạm PT, Vũ ĐK, Staat M (2009) Reliability analysis of inelastic shell structures under variable loads. In: Weichert D, Ponter ARS (eds) Limit states of materials and structures: direct methods. Springer, Netherlands, pp 135–156.  https://doi.org/10.1007/978-1-4020-9634-1_7 CrossRefGoogle Scholar
  40. Trần NT, Trần TN, Matthies HG, Stavroulakis GE, Staat M (2016a) FEM shakedown analysis of uncertain structures by chance constrained programming. PAMM Proc Appl Math Mech 16(1):715–716.  https://doi.org/10.1002/pamm.201610346 CrossRefGoogle Scholar
  41. Trần NT, Trần TN, Matthies HG, Stavroulakis GE, Staat M (2016) FEM shakedown analysis of plate bending under stochastic uncertainty by chance constrained programming. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V(eds) VII European congress on computational methods in applied sciences and engineering, ECCOMAS congress 2016. Crete Island, Greece, 5–10 June 2016, vol 2, pp 3007–3019.  https://doi.org/10.7712/100016.2012.11106
  42. Trần NT, Trần TN, Matthies HG, Stavroulakis GE, Staat M (2017) In: Barrera O, Cocks A, Ponter A (eds) Advances in direct methods for materials and structures, Chap 6. Springer, Cham, pp 120–139.  https://doi.org/10.1007/978-3-319-59810-9_6
  43. Vu DK (2002) Dual limit and shakedown analysis of structures. PhD Thesis. Université de Liège, BelgiqueGoogle Scholar
  44. Vu DK, Yan AM, Nguyen DH (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193:4663–4674.  https://doi.org/10.1016/j.cma.2004.03.011 CrossRefzbMATHGoogle Scholar
  45. Vu DK, Staat M, Tran IT (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23(3):213–225.  https://doi.org/10.1002/cnm.891 CrossRefzbMATHGoogle Scholar
  46. Zouain N (2017) Shakedown and safety assessment. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics. Part 2: Solids and structures, 2nd edn. Wiley, New York, pp 1–48.  https://doi.org/10.1002/9781119176817.ecm2031 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.FH Aachen University of Applied SciencesJülichGermany

Personalised recommendations