Advertisement

Optimization and Engineering

, Volume 20, Issue 1, pp 251–275 | Cite as

On the approximate reanalysis technique in topology optimization

  • Thadeu A. SenneEmail author
  • Francisco A. M. Gomes
  • Sandra A. Santos
Research Article
  • 76 Downloads

Abstract

A classical problem in topology optimization concerns the minimization of the compliance of a static structure, subject to a volume constraint upon the available material. Assuming that the structure is under small displacements and it is composed of a linear elastic material, the evaluation of the objective function demands the solution of a linear system. Hence, within the computational optimization process of addressing topology optimization problems, the cost of evaluating the objective function may be an issue, especially as the discretized mesh is refined. This work pursues the approximate reanalysis technique in combination with the Sequential Piecewise Linear Programming method for obtaining optimized structures. Numerical evidences are presented to corroborate the usage of this blend in a study composed by three distinct strategies in three benchmark test problems. A further analysis has been performed concerning the impact of the computation of the gradient vector of the objective function, pointing out room for additional savings.

Keywords

Topology optimization Linear systems Linear solvers Approximate reanalysis Nonlinear Programming 

Mathematics Subject Classification

90C30 65K05 49M37 65F05 15A23 

Notes

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grants 2013/05475-7, 2013/07375-0); and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants 302915/2016-8, 430678/2016-9). The authors are thankful to the anonymous reviewers, whose comments and suggestions have generated improvements upon the original version of the manuscript.

References

  1. Amir O (2015) Revisiting approximate reanalysis in topology optimization: on the advantages of recycled preconditioning in a minimum weight procedure. Struct Multidisc Optim 51(1):41–57.  https://doi.org/10.1007/s00158-014-1098-7 CrossRefGoogle Scholar
  2. Amir O, Kirsch U, Sheinman I (2008) Efficient non-linear reanalysis of skeletal structures using combined approximations. Int J Numer Methods Eng 73:1328–1346.  https://doi.org/10.1002/nme.2128 CrossRefzbMATHGoogle Scholar
  3. Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78:1474–1491.  https://doi.org/10.1002/nme.2536 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solvers in nested topology optimization. Struct Multidisc Optim 42:55–72.  https://doi.org/10.1007/s00158-009-0463-4 CrossRefzbMATHGoogle Scholar
  5. Amir O, Sigmund O, Lazarov BS, Schevenels M (2012) Efficient reanalysis techniques for robust topology optimization. Comput Methods Appl Mech Eng 245–246:217–231.  https://doi.org/10.1016/j.cma.2012.07.008 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202.  https://doi.org/10.1007/BF01650949 CrossRefGoogle Scholar
  7. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654.  https://doi.org/10.1007/s004190050248 CrossRefzbMATHGoogle Scholar
  8. Bendsøe MP, Sigmund O (2004) Topology optimization, 2nd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  9. Bogomolny M (2010) Topology optimization for free vibrations using combined approximations. Int J Numer Methods Eng 82(5):617–636.  https://doi.org/10.1002/nme.2778 zbMATHGoogle Scholar
  10. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57:1413–1430.  https://doi.org/10.1002/nme.783 CrossRefzbMATHGoogle Scholar
  11. Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans Math Softw 35(3):22:1–14MathSciNetGoogle Scholar
  12. Díaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10:40–45.  https://doi.org/10.1007/BF01743693 CrossRefGoogle Scholar
  13. Gogu C (2015) Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction. Int J Numer Methods Eng 101:281–304.  https://doi.org/10.1002/nme.4797 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Gomes FAM, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 31:53–89. http://ref.scielo.org/m98dcd
  15. Gomes FAM, Senne TA (2014) An algorithm for the topology optimization of geometrically nonlinear structures. Int J Numer Methods Eng 99:391–409.  https://doi.org/10.1002/nme.4686 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Huang G, Wang H, Li G (2017) A novel Multi-Grid assisted reanalysis for re-meshed finite element models. Comput Methods Appl Mech Eng 313:817–833.  https://doi.org/10.1016/j.cma.2016.10.029 MathSciNetCrossRefGoogle Scholar
  17. Kirsch U (1991) Reduced basis approximations of structural displacements for optimal design. AIAA J 29:1751–1758CrossRefzbMATHGoogle Scholar
  18. Kirsch U (2008) Reanalysis of structures. Springer, DordrechtzbMATHGoogle Scholar
  19. Liu HF, Wu BS, Li ZG (2014) Preconditioned conjugate gradient method for static reanalysis with modifications of supports. J Eng Mech-ASCE 141(2):04014111.  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000832 CrossRefGoogle Scholar
  20. Senne TA, Gomes FAM, Santos SA (2016) Approximated solution of linear systems arising from topology optimization of structures. Revista Interdisciplinar de Pesquisa em Engenharia 28:17–29Google Scholar
  21. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373.  https://doi.org/10.1002/nme.1620240207 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573.  https://doi.org/10.1137/S1052623499362822 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Zuo W, Xu T, Zhang H, Xu T (2011) Fast structural optimization with frequency constraints by genetic algorithm using adaptative eigenvalue reanalysis methods. Struct Multidisc Optim 43:799–810.  https://doi.org/10.1007/s00158-010-0610-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thadeu A. Senne
    • 1
    Email author
  • Francisco A. M. Gomes
    • 2
  • Sandra A. Santos
    • 2
  1. 1.Institute of Science and TechnologyFederal University of São PauloSão José dos CamposBrazil
  2. 2.Institute of Mathematics, Statistics and Scientific ComputingState University of CampinasCampinasBrazil

Personalised recommendations