Advertisement

Optimization and Engineering

, Volume 19, Issue 3, pp 629–662 | Cite as

A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system

  • Michael Hintermüller
  • Michael Hinze
  • Christian Kahle
  • Tobias Keil
Research Article

Abstract

This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes system with variable densities. The free energy density associated with the Cahn–Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier–Stokes equation. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented which is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Details of the numerical realization of the adaptive concept and a report on the numerical tests are given.

Keywords

Optimal control Two phase flow Diffuse interfaces Goal-oriented adaptivity Dual-weighted residuals MPEC 

References

  1. Abels H, Garcke H, Grün G (2012) Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci 22(3):1150013–1150040.  https://doi.org/10.1142/S0218202511500138 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Adams RA, Fournier JJF (2003) Sobolev spaces, pure and applied mathematics, vol 140, second edn. Elsevier, AmsterdamGoogle Scholar
  3. Aland S, Lowengrub J, Voigt A (2012) Particles at fluid–fluid interfaces: a new Navier–Stokes–Cahn–Hilliard surface-phase-field-crystal model. Phys Rev E 86(4):046,321CrossRefGoogle Scholar
  4. Aland S, Boden S, Hahn A, Klingbeil F, Weismann M, Weller S (2013) Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int J Numer Methods Fluids 73(4):344–361CrossRefGoogle Scholar
  5. Amestoy P, Duff I, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Mat Anal Appl 23(1):15–41MathSciNetCrossRefzbMATHGoogle Scholar
  6. Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp W, Kaushik D, Knepley M, McInnes L, Rupp K, Smith B, Zampini S, Zhang H (2014) PETSc Web page. http://www.mcs.anl.gov/petsc
  7. Baňas L, Klein M, Prohl A (2014) Control of interface evolution in multiphase fluid flows. SIAM J Control Optim 52(4):2284–2318.  https://doi.org/10.1137/120896530 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Lectures in mathematics ETH Zürich. Birkhäuser, Basel.  https://doi.org/10.1007/978-3-0348-7605-6 CrossRefzbMATHGoogle Scholar
  9. Becker R, Kapp H, Rannacher R (2000) Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J Control Optim 39(1):113–132MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bramble J, Pasciak J, Steinbach O (2001) On the stability of the \(L^2\) projection in \(H^1(\Omega )\). Math Comput 71(237):147–156CrossRefGoogle Scholar
  11. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, texts in applied mathematics, vol 15. Springer, Berlin.  https://doi.org/10.1007/2F978-0-387-75934-0 CrossRefGoogle Scholar
  12. Brett C, Elliott CM, Hintermüller M, Löbhard C (2015) Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state. Interfaces Free Bound 17(1):21–53.  https://doi.org/10.4171/IFB/332 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I: interfacial free energy. J Chem Phys 28(2):258–267CrossRefGoogle Scholar
  14. Constantin P, Foias C (1988) Navier–Stokes-equations. The University of Chicago Press, ChicagozbMATHGoogle Scholar
  15. Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 33(3):1106–1124.  https://doi.org/10.1137/0733054 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Eckert S, Nikrityuk PA, Willers B, Räbiger D, Shevchenko N, Neumann-Heyme H, Travnikov V, Odenbach S, Voigt A, Eckert K (2013) Electromagnetic melt flow control during solidification of metallic alloys. Eur Phys J Spec Top 220(1):123–137CrossRefGoogle Scholar
  17. Garcke H, Hecht C, Hinze M, Kahle C (2015) Numerical approximation of phase field based shape and topology optimization for fluids. SIAM J Sci Comput 37(4):1846–1871.  https://doi.org/10.1137/140969269 MathSciNetCrossRefzbMATHGoogle Scholar
  18. Garcke H, Hecht C, Hinze M, Kahle C, Lam KF (2016) Shape optimization for surface functionals in Navier–Stokes flow using a phase field approach. Interfaces Free Bound 18(2):219–261MathSciNetCrossRefzbMATHGoogle Scholar
  19. Garcke H, Hinze M, Kahle C (2016) A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl Numer Math 99:151–171. http://www.sciencedirect.com/science/article/pii/S0168927415001324
  20. Garcke H, Hinze M, Kahle C (2016) Optimal Control of time-discrete two-phase flow driven by a diffuse-interface model. arXiv:1612.02283, to appear in ESAIM:COCV
  21. Girault V, Raviart PA (1986) Finite element methods for Navier–Stokes equations, vol 5. Springer series in computational mathematics. Theory and algorithms. Springer, Berlin.  https://doi.org/10.1007/978-3-642-61623-5 CrossRefzbMATHGoogle Scholar
  22. GSL—GNU Scientific Library. http://www.gnu.org/software/gsl/
  23. Günther A, Hinze M (2008) A posteriori error control of a state constrained elliptic control problem. J Numer Math 16(4):307–322.  https://doi.org/10.1515/JNUM.2008.014 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Hintermüller M, Hoppe RHW (2008) Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J Control Optim 47(4):1721–1743.  https://doi.org/10.1137/070683891 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Hintermuller M, Hoppe RHW (2010) Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J Control Optim 48(8):5468–5487.  https://doi.org/10.1137/090761823 MathSciNetCrossRefzbMATHGoogle Scholar
  26. Hintermüller M, Kopacka I (2009) Mathematical programs with complementarity constraints in function space: \(C\)- and strong stationarity and a path-following algorithm. SIAM J Optim 20(2):868–902.  https://doi.org/10.1137/080720681 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hintermüller M, Wegner D (2014) Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM J Control Optim 52(1):747–772.  https://doi.org/10.1137/120865628 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hintermüller M, Hinze M, Tber MH (2011) An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem. Optim Methods Softw 26(4–5):777–811.  https://doi.org/10.1080/10556788.2010.549230 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Hintermüller M, Hoppe RHW, Löbhard C (2014) Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim Calc Var 20(2):524–546.  https://doi.org/10.1051/cocv/2013074 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Hintermüller M, Mordukhovich BS, Surowiec TM (2014) Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math Program 146(1–2, Ser. A):555–582.  https://doi.org/10.1007/s10107-013-0704-6 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Hintermüller M, Schiela A, Wollner W (2014) The length of the primal-dual path in Moreau–Yosida-based path-following methods for state constrained optimal control. SIAM J Optim 24(1):108–126.  https://doi.org/10.1137/120866762 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Hintermüller M, Keil T, Wegner D (2015) Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with non-matched fluid densities. arXiv preprint arXiv:1506.03591
  33. Hintermüller M, Surowiec T (2012) A bundle-free implicit programming approach for a class of MPECs in function space. preprintGoogle Scholar
  34. Hinze M, Kahle C (2013a) A nonlinear model predictive concept for the control of two-phase flows governed by the Cahn–Hilliard Navier–Stokes system. In: System modeling and optimization, vol. 391 in IFIP advances in information and communication technology .  https://doi.org/10.1007/978-3-642-36062-6_35
  35. Hinze M, Kahle C (2013b) Model predictive control of variable density multiphase flows governed by diffuse interface models. In: Proceedings of the first IFAC workshop on control of systems modeled by partial differential equations, vol 1. pp 127–132.  https://doi.org/10.3182/20130925-3-FR-4043.00033. http://www.ifac-papersonline.net/Detailed/64229.html
  36. Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49(3):435CrossRefGoogle Scholar
  37. Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Methods Fluids 60(11):1259–1288.  https://doi.org/10.1002/fld.1934 MathSciNetCrossRefzbMATHGoogle Scholar
  38. John V, Linke A, Merdon C, Neilan M, Rebholz L (2016) On the divergence constraint in mixed finite element methods for incompressible flows. (to appear in SIAM Review)Google Scholar
  39. Kahle C (2017) An \(L^\infty\) bound for the Cahn–Hilliard equation with relaxed non-smooth free energy density. Int J Numer Anal Model 14(2):243–254MathSciNetzbMATHGoogle Scholar
  40. Kim J, Kang K, Lowengrub J (2004) Conservative multigrid methods for Cahn–Hilliard fluids. J Comput Phys 193(2):511–543.  https://doi.org/10.1016/j.jcp.2003.07.035 MathSciNetCrossRefzbMATHGoogle Scholar
  41. Kim J, Lowengrub J (2006) Interfaces and multicomponent fluids. In: Encyclopedia of mathematical physics, pp 135–144. https://www.sciencedirect.com/science/article/pii/B0125126662002753
  42. Logg A, Mardal KA, Wells G (eds) (2012) Automated solution of differential equations by the finite element method–The FEniCS book, vol 84. Lecture notes in computational science and engineering. Springer, Berlin.  https://doi.org/10.1007/978-3-642-23099-8 zbMATHGoogle Scholar
  43. Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511983658 CrossRefzbMATHGoogle Scholar
  44. Meyer C, Rademacher A, Wollner W (2015) Adaptive optimal control of the obstacle problem. SIAM J Sci Comput 37(2):A918–A945MathSciNetCrossRefzbMATHGoogle Scholar
  45. Nochetto R, Siebert K, Veeser A (2003) Pointwise a-posteriori error control for elliptic obstacle problems. Numer Math 95:163–195MathSciNetCrossRefzbMATHGoogle Scholar
  46. Oono Y, Puri S (1988) Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys Rev A 38(1):434CrossRefGoogle Scholar
  47. Outrata J, Kočvara M, Zowe J (1998) Nonsmooth approach to optimization problems with equilibrium constraints, nonconvex optimization and its applications, vol 28. Kluwer Academic Publishers, Dordrecht.  https://doi.org/10.1007/978-1-4757-2825-5 zbMATHGoogle Scholar
  48. Praetorius S, Voigt A (2015) A Navier Stokes phase field crystal model for colloidal suspensions. J Chem Phys 142:154904CrossRefGoogle Scholar
  49. Rösch A, Wachsmuth D (2012) A-posteriori error estimates for optimal control problems with state and control constraints. Numer Math 120(4):733–762.  https://doi.org/10.1007/s00211-011-0422-z MathSciNetCrossRefzbMATHGoogle Scholar
  50. Scheel H, Scholtes S (2000) Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math Oper Res 25(1):1–22.  https://doi.org/10.1287/moor.25.1.1.15213 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Schmidt A, Siebert KG (2005) Design of adaptive finite element software: the finite element toolbox ALBERTA, vol 42. Lecture notes in computational science and engineering. Springer, BerlinzbMATHGoogle Scholar
  52. Verfürth R (2010) A posteriori error analysis of space–time finite element discretizations of the time-dependent Stokes equations. Calcolo 47(3):149–167.  https://doi.org/10.1007/s10092-010-0018-5 MathSciNetCrossRefzbMATHGoogle Scholar
  53. Vexler B, Wollner W (2008) Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J Control Optim 47(1):509–534.  https://doi.org/10.1137/070683416 MathSciNetCrossRefzbMATHGoogle Scholar
  54. Zhou B, et al (2006) Simulations of polymeric membrane formation in 2d and 3d. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  55. Zowe J, Kurcyusz S (1979) Regularity and stability for the mathematical programming problem in Banach spaces. Appl Math Optim 5(1):49–62.  https://doi.org/10.1007/BF01442543 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael Hintermüller
    • 1
    • 2
  • Michael Hinze
    • 3
  • Christian Kahle
    • 4
  • Tobias Keil
    • 2
  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Department MathematikHumboldt Universität zu BerlinBerlinGermany
  3. 3.Fachbereich MathematikUniversität HamburgHamburgGermany
  4. 4.Zentrum Mathematik, M17Technische Universität MünchenGarchingGermany

Personalised recommendations