Optimization and Engineering

, Volume 17, Issue 1, pp 27–45 | Cite as

Use of a biobjective direct search algorithm in the process design of material science applications

  • Aïmen E. Gheribi
  • Jean-Philippe Harvey
  • Eve Bélisle
  • Christian Robelin
  • Patrice Chartrand
  • Arthur D. Pelton
  • Christopher W. Bale
  • Sébastien Le Digabel


This work describes the application of a direct search method to the optimization of problems of real industrial interest, namely three new material science applications designed with the FactSage software. The search method is BiMADS, the biobjective version of the mesh adaptive direct search (MADS) algorithm, designed for blackbox optimization. We give a general description of the algorithm, and, for each of the three test cases, we describe the optimization problem, discuss the algorithmic choices, and give numerical results to demonstrate the efficiency of BiMADS.


Blackbox optimization Derivative-free optimization Biobjective optimization Mesh adaptive direct search Material science Alloy design Process design 

Mathematics Subject Classification

90C56 62P30 



The authors thank Christopher Hutchinson and Chad Sinclair for their approach to the steel-design problem, which allowed us to test BiMADS on this complex application. The work of the first, fifth, and sixth authors was supported by a Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) via the Magnesium Strategic Research Network. The last author was supported by NSERC Grant 418250 and by AFOSR FA9550-12-1-0198.


  1. Abramson MA, Audet C, Couture G, Dennis Jr JE, Le Digabel S, Tribes C (2015) The NOMAD project. https://www.gerad.ca/nomad
  2. Abramson MA, Audet C, Dennis JE Jr, Le Digabel S (2009) OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J Optim 20(2):948–966CrossRefMathSciNetMATHGoogle Scholar
  3. Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217CrossRefMathSciNetMATHGoogle Scholar
  4. Audet C, Dennis JE Jr (2009) A progressive barrier for derivative-free nonlinear programming. SIAM J Optim 20(1):445–472CrossRefMathSciNetMATHGoogle Scholar
  5. Audet C, Béchard V, Le Digabel S (2008a) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim 41(2):299–318CrossRefMATHGoogle Scholar
  6. Audet C, Savard G, Zghal W (2008b) Multiobjective optimization through a series of single-objective formulations. SIAM J Optim 19(1):188–210CrossRefMathSciNetMATHGoogle Scholar
  7. Audet C, Dennis JE Jr, Le Digabel S (2010a) Globalization strategies for mesh adaptive direct search. Comput Optim Appl 46(2):193–215CrossRefMathSciNetMATHGoogle Scholar
  8. Audet C, Savard G, Zghal W (2010b) A mesh adaptive direct search algorithm for multiobjective optimization. Eur J Oper Res 204(3):545–556CrossRefMathSciNetMATHGoogle Scholar
  9. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases—recent developments. CALPHAD Comput Coupling Phase Diagr Thermochem 33(2):295–311CrossRefGoogle Scholar
  10. Chartrand P, Pelton AD (2002) A predictive thermodynamic model for the Al–NaF–AlF3 system. In: Schneider WA (ed) Light metals 2002. Minerals, Metals and Materials Society, Warrendale, pp 245–252Google Scholar
  11. Chrenkova M, Danek V, Silny A, Utigard TA (1996) Density, electrical conductivity and viscosity of low melting baths for aluminium electrolysis. In: Hale W (ed) Light metals 1996. Minerals, Metals and Materials Society, Warrendale, pp 227–232Google Scholar
  12. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York. Reissued in 1990 by SIAM Publications, Philadelphia, as vol 5 in the series classics in applied mathematicsGoogle Scholar
  13. Conn AR, Le Digabel S (2013) Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim Methods Softw 28(1):139–158CrossRefMathSciNetMATHGoogle Scholar
  14. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MOS-SIAM series on optimization. SIAM, PhiladelphiaCrossRefGoogle Scholar
  15. Custódio AL, Madeira JFA, Vaz AIF, Vicente LN (2011) Direct multisearch for multiobjective optimization. SIAM J Optim 21(3):1109–1140CrossRefMathSciNetMATHGoogle Scholar
  16. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  17. Degarmo EP, Black JT, Kohser RA (2003) Materials and processes in manufacturing, 9th edn. Wiley, New YorkGoogle Scholar
  18. Dmitrieva O, Ponge D, Inden G, Millán J, Choi P, Sietsma J, Raabe D (2011) Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater 59(1):364–374CrossRefGoogle Scholar
  19. Fermi E, Metropolis (1952) Numerical solution of a minimum problem. Los Alamos unclassified report LA-1492. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  20. Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program A 91:239–269CrossRefMathSciNetMATHGoogle Scholar
  21. Gheribi AE, Robelin C, Le Digabel S, Audet C, Pelton AD (2011) Calculating all local minima on liquidus surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm. J Chem Thermodyn 43(9):1323–1330CrossRefGoogle Scholar
  22. Gheribi AE, Audet C, Le Digabel S, Bélisle E, Bale CW, Pelton AD (2012) Calculating optimal conditions for alloy and process design using thermodynamic and properties databases, the FactSage software and the Mesh Adaptive Direct Search algorithm. CALPHAD Comput Coupling Phase Diagr Thermochem 36:135–143CrossRefGoogle Scholar
  23. Gheribi AE, Le Digabel S, Audet C, Chartrand P (2013) Identifying optimal conditions for magnesium based alloy design using the Mesh Adaptive Direct Search algorithm. Thermochim Acta 559:107–110CrossRefGoogle Scholar
  24. Haupin W (1991) The influence of additives on Hall–Héroult bath properties. JOM 43(11):28–34CrossRefGoogle Scholar
  25. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic, New YorkGoogle Scholar
  26. Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw 37(4):44:1–44:15CrossRefGoogle Scholar
  27. Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall Mater Trans A 32(6):1409–1416CrossRefGoogle Scholar
  28. Renaud E, Robelin C, Gheribi AE, Chartrand P (2011) Thermodynamic evaluation and optimization of the Li, Na, K, Mg, Ca, Sr//F, Cl reciprocal system. J Chem Thermodyn 43(8):1286–1298CrossRefGoogle Scholar
  29. Robelin C, Chartrand P (2007a) A density model based on the modified quasichemical model and applied to the NaF–AlF\(_3\)–CaF\(_2\)–Al\(_2\)O\(_3\) electrolyte. Metall Mater Trans B 38(6):881–892CrossRefGoogle Scholar
  30. Robelin C, Chartrand P (2007b) Predictive models for the density and viscosity of the NaF–AlF3–CaF2–Al2O3 electrolyte. In: Sorlie M (ed) Light metals 2007. Minerals, Metals and Materials Society, Warrendale, pp 565–570Google Scholar
  31. Robelin C, Chartrand P, Eriksson G (2007) A density model for multicomponent liquids based on the modified quasichemical model: application to the NaCl–KCl–MgCl\(_2\)–CaCl\(_2\) system. Metall Mater Trans B 38(6):869–879CrossRefGoogle Scholar
  32. Saunders N, Miodownik AP (eds) (1998) Chapter 6: phase stabilities. In: Pergamon materials series, vol 1. Pergamon. doi: 10.1016/S1470-1804(98)80026-6
  33. Sha W (2013) Ultra high-strength maraging steel. In: Steels. Springer, London, pp 141–161Google Scholar
  34. Sourmail T, Garcia-Mateo C (2005a) A model for predicting the Ms temperatures of steels. Comput Mater Sci 34(2):213–218CrossRefGoogle Scholar
  35. Sourmail T, Garcia-Mateo C (2005b) Critical assessment of models for predicting the Ms temperature of steels. Comput Mater Sci 34(4):323–334CrossRefGoogle Scholar
  36. Tiwaria S, Fadelb G, Deb K (2011) AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization. Eng Optim 43(4):377–401CrossRefGoogle Scholar
  37. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Aïmen E. Gheribi
    • 1
  • Jean-Philippe Harvey
    • 2
  • Eve Bélisle
    • 1
  • Christian Robelin
    • 1
  • Patrice Chartrand
    • 1
  • Arthur D. Pelton
    • 1
  • Christopher W. Bale
    • 1
  • Sébastien Le Digabel
    • 3
  1. 1.CRCT, Centre de Recherche en Calcul Thermochimique, Département de Génie ChimiqueÉcole Polytechnique de MontréalMontrealCanada
  2. 2.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  3. 3.GERAD and Département de Mathématiques et Génie IndustrielÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations