Advertisement

Optimization and Engineering

, Volume 17, Issue 1, pp 3–26 | Cite as

A parallel evolution strategy for an earth imaging problem in geophysics

  • Y. Diouane
  • S. Gratton
  • X. Vasseur
  • L. N. Vicente
  • H. Calandra
Article

Abstract

In this paper we propose a new way to compute a rough approximation solution, to be later used as a warm starting point in a more refined optimization process, for a challenging global optimization problem related to earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms and the natural parallelization of evolution strategies as global optimization methods for continuous variables. Our first contribution consists of developing a new and efficient parametrization of the velocity models to significantly reduce the dimension of the original optimization space. Our second contribution is to adapt a class of evolution strategies to the specificity of the physical problem at hands where the objective function evaluation is known to be the most expensive computational part. A third contribution is the development of a parallel evolution strategy solver, taking advantage of a recently proposed modification of these class of evolutionary methods that ensures convergence and promotes better performance under moderate budgets. The numerical results presented demonstrate the effectiveness of the algorithm on a realistic 3D full-waveform inverse problem in geophysics. The developed numerical approach allows us to successfully solve an acoustic full-waveform inversion problem at low frequencies on a reasonable number of cores of a distributed memory computer.

Keywords

Evolution strategy Global convergence Earth imaging Inverse problem High performance computing (HPC) Search space reduction Full-waveform inversion 

Notes

Acknowledgments

The authors would like to acknowledge GENCI (Grand Equipement National de Calcul Intensif) for letting us used the CURIE computer at CCRT, Bruyères-le-Châtel, France. This work was granted access to the HPC resources of CCRT under allocation 2014065068 made by GENCI. Support for L. N. Vicente was provided by FCT under Grants PTDC/MAT/116736/2010 and PEst-C/MAT/UI0324/2011 and by the Réseau Thématique de Recherche Avancée, Fondation de Coopération Sciences et Technologies pour l’Aéronautique et l’Espace, under the grant ADTAO.

References

  1. Aditya G, Akhilesh B, Kuntal C (2012) A comprehensive review of image smoothing techniques. Int J Adv Res Comput Eng Technol 1:315–319Google Scholar
  2. Auger A, Brockhoff D, Hansen N (2013) Benchmarking the local metamodel CMA–ES on the noiseless BBOB’2013 test bed. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, GECCO ’13 companion. ACM, New York, pp 1225–1232Google Scholar
  3. Auger A, Hansen N, Perez Zerpa ZJ, Ros R, Schoenauer M (2009) Experimental comparisons of derivative free optimization algorithms. In: 8th international symposium on experimental algorithms, vol 5526 of Lecture Notes in Computer Science. Springer, pp 3–15Google Scholar
  4. Berenger J-P (1994) A perfectly matched layer for absorption of electromagnetic waves. J Comput Phys 114:185–200CrossRefMathSciNetzbMATHGoogle Scholar
  5. Berenger J-P (1996) Three-dimensional perfectly matched layer for absorption of electromagnetic waves. J Comput Phys 127:363–379CrossRefMathSciNetzbMATHGoogle Scholar
  6. Beyer H-G, Schwefel H-P (2002) Evolution strategies: a comprehensive introduction. Nat Comput 1:3–52CrossRefMathSciNetzbMATHGoogle Scholar
  7. Billette F, Le Bégat S, Podvin P, Lambaré G (2003) Practical aspects and applications of 2D stereotomography. Geophysics 68:1008–1021CrossRefGoogle Scholar
  8. Billette F, Lambaré G (1998) Velocity macro-model estimation from seismic reflection data by stereotomography. Geophys J Int 135:671–690CrossRefGoogle Scholar
  9. Britanak V, Yip PC, Rao KR (2006) Discrete cosine and sine transforms. Academic Press, OxfordCrossRefGoogle Scholar
  10. Brossier R (2009) Imagerie Sismique à Deux Dimensions des Milieux Visco-élastiques par Inversion des Formes d’Ondes : Développements Méthodologiques et Applications. PhD thesis, Université de Nice-Sophia AntipolisGoogle Scholar
  11. Calandra H, Gratton S, Lago R, Vasseur X, Carvalho L (2013) A modified block flexible GMRES method with deflation at each iteration for the solution of non-hermitian linear systems with multiple right-hand sides. SIAM J Sci Comput 35:S345–S367CrossRefMathSciNetzbMATHGoogle Scholar
  12. Calandra H, Gratton S, Langou J, Pinel X, Vasseur X (2012) Flexible variants of block restarted GMRES methods with application to geophysics. SIAM J Sci Comput 34:A714–A736CrossRefMathSciNetzbMATHGoogle Scholar
  13. Cohen G (2002) Higher-order numerical methods for transient wave equations. Springer, BerlinCrossRefzbMATHGoogle Scholar
  14. Collins MD, Kuperman WA (1992) Nonlinear inversion for ocean bottom properties. J Acoust Soc Am 92:2770–2782CrossRefGoogle Scholar
  15. Diouane Y (2014) Globally convergent evolution strategies with application to an earth imaging problem in geophysics. PhD thesis. Institut National Polytechnique de ToulouseGoogle Scholar
  16. Diouane Y, Gratton S, Vicente LN (2015) Globally convergent evolution strategies. Math Program 152:467–490CrossRefMathSciNetGoogle Scholar
  17. Diouane Y, Gratton S, Vicente LN (2015) Globally convergent evolution strategies for constrained optimization. Comput Optim Appl 62:323–346CrossRefMathSciNetGoogle Scholar
  18. Ernst O, Gander MJ (2012) Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Lakkis O, Graham I, Hou T, Scheichl R (eds) Numerical analysis of multiscale problems. Springer, New York, pp 325–363CrossRefGoogle Scholar
  19. Gerstoft P (1994) Nonlinear inversion for ocean bottom properties. J Acoust Soc Am 95:770–782CrossRefGoogle Scholar
  20. Hansen N (2011) The CMA evolution strategy: a tutorial. Available via URL: https://www.lri.fr/ hansen/cmatutorial.pdfGoogle Scholar
  21. Hansen N, Arnold DV, Auger A (to appear) Evolution strategies. In Kacprzyk J, Pedrycz W (eds) Handbook of computational intelligence. Springer, BerlinGoogle Scholar
  22. Hansen N, Auger A, Ros Raymond R, Finck S, Pošík P (2010) Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation, GECCO ’10. ACM, New York, pp 1689–1696Google Scholar
  23. Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation. In Eshelman L (ed) Proceedings of the sixth international conference on genetic algorithms. Pittsburgh, pp 57–64Google Scholar
  24. Henderson A (2007) ParaView guide. A parallel visualization application. Kitware Inc, Clifton ParkGoogle Scholar
  25. Kennett BL, Sambridge MS, Williamson PR (1988) Subspace methods for large inverse problems with multiple parameter classes. Geophys J Int 94:237–247CrossRefzbMATHGoogle Scholar
  26. Lago R (2013) A study on block flexible iterative solvers with application to earth imaging problem in geophysics. PhD thesis. Institut National Polytechnique de ToulouseGoogle Scholar
  27. Lambaré G (2008) Stereotomography. Geophysics 73:VE25–VE34CrossRefGoogle Scholar
  28. Mulder WA, Plessix RE (2008) Exploring some issues in acoustic full waveform inversion. Geophys Prospect 56:827–841CrossRefGoogle Scholar
  29. Nabi OM, Xiaodong L (2010) A comparative study of CMA–ES on large scale global optimisation. In Jiuyong Li (ed) Australasian conference on artificial intelligence, vol 6464 of Lecture Notes in Computer Science. Springer, pp 303–312Google Scholar
  30. Nolet G (ed) (1987) Seismic tomography: with applications in global seismology and exploration geophysics. D. Reidel publishing Company, DordrechtGoogle Scholar
  31. Oldenburg DW, McGillivray PR, Ellis RG (1993) Generalized subspace methods for large-scale inverse problems. Geophys J Int 114:12–20CrossRefGoogle Scholar
  32. Operto S, Virieux J, Dessa JX, Pascal G (2006) Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai Trough. J Geophys Res 159:1032–1056Google Scholar
  33. Pinel X (2010) A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics. PhD thesis. Institut National Polytechnique de ToulouseGoogle Scholar
  34. Pratt GR, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prospect 38(3):287–310CrossRefGoogle Scholar
  35. Pratt RG (1999) Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64:888–901CrossRefGoogle Scholar
  36. Rauber T, Rünger G (2013) Parallel programming: for multicore and cluster systems, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  37. Ravaut C, Operto S, Improta L, Virieux J, Herrero A, Dell’Aversana P (2004) Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophys J Int 159:1032–1056CrossRefGoogle Scholar
  38. Rechenberg I (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-HolzboogGoogle Scholar
  39. Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Glob Optim 56:1247–1293CrossRefMathSciNetzbMATHGoogle Scholar
  40. Röth G (1994) Application of neural networks to seismic inverse problems. PhD thesis. Institut de Physique du Globe de ParisGoogle Scholar
  41. Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173:922–931CrossRefGoogle Scholar
  42. Shin C, Ha W (2008) A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics 73:VE119–VE133CrossRefGoogle Scholar
  43. Shin C, Ha W (2012) Laplace-domain full-waveform inversion of seismic data lacking low-frequency information. Geophysics 77:R199–R206CrossRefGoogle Scholar
  44. Sirgue L (2006) The importance of low frequency and large offset in waveform inversion. In: Extended abstracts, vol A037 of 68th confererence & technical exhibition. EAGEGoogle Scholar
  45. Sirgue L, Pratt RG (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69:231–248CrossRefGoogle Scholar
  46. Sjogreen B, Petersson NA (2014) Source estimation by full wave form inversion. J Sci Comput 59:247–276CrossRefMathSciNetGoogle Scholar
  47. Skilling J, Bryan RK (1984) Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc 211:111–124CrossRefzbMATHGoogle Scholar
  48. Sourbier F, Operto S, Virieux J, Amestoy P, L’ JY (2009) Excellent. FWT2D: a massively parallel program for frequency-domain Full-Waveform Tomography of wide-aperture seismic data—part 1: algorithm. Comput Geosci 35:487–495CrossRefGoogle Scholar
  49. Sourbier F, Operto S, Virieux J, Amestoy P, L’ JY (2009) Excellent. FWT2D: a massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data: part 2: numerical examples and scalability analysis. Comput Geosci 35:496–514CrossRefGoogle Scholar
  50. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  51. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the sixth international conference on computer vision. IEEE Computer Society, Washington, DC, pp. 839–846Google Scholar
  52. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. Diouane
    • 1
  • S. Gratton
    • 2
  • X. Vasseur
    • 3
  • L. N. Vicente
    • 4
  • H. Calandra
    • 5
  1. 1.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Universit de ToulouseToulouse Cedex 4France
  2. 2.ENSEEIHT, INPTToulouse Cedex 7France
  3. 3.CERFACSToulouse Cedex 1France
  4. 4.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal
  5. 5.TOTAL E&P Research and Technology USAHoustonUSA

Personalised recommendations