Variations and extension of the convex–concave procedure
- 1.8k Downloads
- 78 Citations
Abstract
We investigate the convex–concave procedure, a local heuristic that utilizes the tools of convex optimization to find local optima of difference of convex (DC) programming problems. The class of DC problems includes many difficult problems such as the traveling salesman problem. We extend the standard procedure in two major ways and describe several variations. First, we allow for the algorithm to be initialized without a feasible point. Second, we generalize the algorithm to include vector inequalities. We then present several examples to demonstrate these algorithms.
Keywords
Convex optimization Convex concave procedure Sequential optimization Difference of convex programmingNotes
Acknowledgments
We would like to thank our many reviewers for their comments which improved this paper and in particular for highlighting much of the recent work in DCA. This research was made possible by the National Science Foundation Graduate Research Fellowship, Grant DGE-1147470 and by the Cleve B. Moler Stanford Graduate Fellowship.
Supplementary material
References
- Absil PA, Mahony R, Sepulchre R (2009) Optimization algorithms on matrix manifolds. Princeton University Press, PrincetonzbMATHGoogle Scholar
- Agin N (1966) Optimum seeking with branch and bound. Manag Sci 13:176–185CrossRefGoogle Scholar
- Beck A, Ben-Tal A, Tetrushvili L (2010) A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J Glob Optim 47(1):29–51MathSciNetzbMATHCrossRefGoogle Scholar
- Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396zbMATHCrossRefGoogle Scholar
- Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4(1):1–51MathSciNetzbMATHCrossRefGoogle Scholar
- Boyd S, Vandenberghe L (2004) Convex Optim. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
- Boyd S, Hast M, Åström KJ (2015) MIMO PID tuning via iterated LMI restriction. Int J Robust Nonlinear Control To appearGoogle Scholar
- Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185MathSciNetzbMATHCrossRefGoogle Scholar
- Byrne C (2000) Block-iterative interior point optimization methods for image reconstruction from limited data. Inverse Probl 16(5):1405MathSciNetzbMATHCrossRefGoogle Scholar
- Crawford JM, Auton LD (1996) Experimental results on the crossover point in random 3-SAT. Artif Intell 81(1):31–57MathSciNetCrossRefGoogle Scholar
- CVX Research I (2012) CVX: MATLAB software for disciplined convex programming, version 2.0. http://cvxr.com.cvx
- De Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Barra JR, Brodeau F, Romier G, Van Cutsem B (eds) Recent developments in statistics. North Holland Publishing, Amsterdam, pp 133–146Google Scholar
- Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38MathSciNetzbMATHGoogle Scholar
- Di Pillo G, Grippo L (1989) Exact penalty functions in constrained optimization. SIAM J Control Optim 27(6):1333–1360MathSciNetzbMATHCrossRefGoogle Scholar
- Diamond S, Boyd S (2015) CVXPY: a python-embedded modeling language for convex optimization. J Mach Learn Res Mach Learn Open Sour Softw To appearGoogle Scholar
- Diamond S, Chu E, Boyd S (2014) CVXPY: a python-embedded modeling language for convex optimization, version 0.2. http://cvxpy.org/
- Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: European control conference, pp 3071–3076Google Scholar
- Drira A, Pierreval H, Hajri-Gabouh S (2007) Facility layout problems: a survey. Annu Rev Control 31(2):255–267CrossRefGoogle Scholar
- du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized column generation. Discret Math 194(1):229–237MathSciNetzbMATHCrossRefGoogle Scholar
- Edelman A, Tomás AA, Smith TS (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetzbMATHCrossRefGoogle Scholar
- Elzinga J, Moore TJ (1975) A central cutting plane algorithm for convex programming problems. Math Program 8:134–145MathSciNetzbMATHCrossRefGoogle Scholar
- Falk JE, Hoffmann KR (1976) A successive underestimation method for concave minimization problems. Math Oper Res 1(3):251–259zbMATHCrossRefGoogle Scholar
- Falk JE, Soland RM (1969) An algorithm for separable nonconvex programming problems. Manag Sci 15(9):550–569MathSciNetzbMATHCrossRefGoogle Scholar
- Fardad M, Jovanović MR (2014) On the design of optimal structured and sparse feedback gains via sequential convex programming. In: American control conference, pp 2426–2431Google Scholar
- Garcia Palomares UM, Mangasarian OL (1976) Superlinearly convergent quasi-newton algorithms for nonlinearly constrained optimization problems. Math Program 11(1):1–13MathSciNetzbMATHCrossRefGoogle Scholar
- Gill PE, Wong E (2012) Sequential quadratic programming methods. In: Mixed integer nonlinear programming, Springer, pp 147–224Google Scholar
- Grant M, Boyd S (2008) Graph implementation for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent Advances in learning and control, lecture notes in control and information sciences, Springer. http://stanford.edu/ boyd/graph_dcp.html
- Han SP, Mangasarian OL (1979) Exact penalty functions in nonlinear programming. Math Program 17(1):251–269MathSciNetzbMATHCrossRefGoogle Scholar
- Hanan M, Kurtzberg J (1972) Placement techniques. In: Breuer MA (ed) Design automation of digital systems, vol 1. Prentice-Hall, Upper Saddle River, pp 213–282Google Scholar
- Hartman P (1959) On functions representable as a difference of convex functions. Pac J Math 9(3):707–713MathSciNetzbMATHCrossRefGoogle Scholar
- Hillestad RJ (1975) Optimization problems subject to a budget constraint with economies of scale. Oper Res 23(6):1091–1098MathSciNetzbMATHCrossRefGoogle Scholar
- Hillestad RJ, Jacobsen SE (1980a) Linear programs with an additional reverse convex constraint. Appl Math Optim 6(1):257–269MathSciNetzbMATHCrossRefGoogle Scholar
- Hillestad RJ, Jacobsen SE (1980b) Reverse convex programming. Appl Math Optim 6(1):63–78MathSciNetzbMATHCrossRefGoogle Scholar
- Horst R (1986) A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization. J Optim Theory Appl 51(2):271–291MathSciNetzbMATHCrossRefGoogle Scholar
- Horst R, Thoai NV (1999) DC programming: overview. J Optim Theory Appl 103(1):1–43MathSciNetzbMATHCrossRefGoogle Scholar
- Horst R, Tuy H (1996) Global Optimization, 3rd edn. Springer, New YorkzbMATHCrossRefGoogle Scholar
- Horst R, Phong TQ, Thoai NV, De Vries J (1991a) On solving a DC programming problem by a sequence of linear programs. J Glob Optim 1(2):183–203zbMATHCrossRefGoogle Scholar
- Horst R, Thoai NV, Benson HP (1991b) Concave minimization via conical partitions and polyhedral outer approximation. Math Program 50:259–274MathSciNetzbMATHCrossRefGoogle Scholar
- Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
- Karp RM (1972) Reducibility among combinatorial problems. In: Thatcher JW, Miller RE (eds) Complexity of computer computation. Plenum, Berlin, pp 85–104CrossRefGoogle Scholar
- Kelly JE Jr (1960) The cutting-plane method for solving convex programs. J Soc Ind Appl Math 8(4):703–712MathSciNetCrossRefGoogle Scholar
- Lanckreit GR, Sriperumbudur BK (2009) On the convergence of the concave-convex procedure. Adv Neural Inf Process Syst, 1759–1767Google Scholar
- Lange K (2004) Optimization. Springer texts in statistics. Springer, New YorkGoogle Scholar
- Lange K, Hunter DR, Yang I (2000) Optimization transfer using surrogate objective functions. J Comput Graph Stat 9(1):1–20MathSciNetGoogle Scholar
- Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14:699–719MathSciNetzbMATHCrossRefGoogle Scholar
- Le HM, Le Thi HA, Pham Dinh T, Bouvry P (2010) A combined DCA: GA for constructing highly nonlinear balanced Boolean functions in cryptography. J Glob Optim 47(4):597–613MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA (2003) Solving large scale molecular distance geometry problems by a smoothing technique via the Gaussian transform and DC programming. J Glob Optim 27(4):375–397MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA (2015) DC programming and DCA: local and global approaches—theory, algorithms and applications. http://lita.sciences.univ-metz.fr/lethi/DCA.html
- Le Thi HA, Pham Dinh T (1997) Solving a class of linearly constrainted indefinite quadratic problems by DC algorithms. J Glob Optim 11(3):253–285zbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T (2003) Large-scale molecular optimization for distance matrices by a DC optimization approach. SIAM J Optim 14(1):77–114MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T (2008) A continuous approach for the concave cost supply problem via DC programming and DCA. Discret Appl Math 156(3):325–338MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T, Muu LD (1996) Numerical solution for optimization over the efficient set by d.c. optimization algorithms. Oper Res Lett 19:117–128MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T, Muu LD (1998) A combined D.C. optimization-ellipsoidal branch-and-bound algorithm for solving nonconvex quadratic programming problems. J Comb Optim 2(1):9–28MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T, Thoai NV (2002) Combination between global and local methods for solving an optimization problem over the efficient set. Eur J Oper Res 142(2):258–270MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Moeini M, Pham Dinh T (2009a) DC programming approach for portfolio optimization under step increasing transaction costs. Optimization 58(3):267–289MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T, Nguyen CN, Thoai NV (2009b) DC programming techniques for solving a class of nonlinear bilevel programs. J Glob Optim 44(3):313–337MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Pham Dinh T, Ngai HV (2012) Exact penalty and error bounds in DC programming. J Glob Optim 52(3):509–535MathSciNetzbMATHCrossRefGoogle Scholar
- Le Thi HA, Huynh VN, Pham Dinh T (2014) DC programming and DCA for general DC programs. Adv Comput Methods Knowl Eng, 15–35Google Scholar
- Lipp T, Boyd S (2014) MATLAB and python examples of convex-concave procedure. http://www.stanford.edu/ boyd/software/cvx_ccv_examples/
- Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New YorkzbMATHGoogle Scholar
- Maranas CD, Floudas CA (1997) Global optimization in generalized geometric programming. Comput Chem Eng 21(4):351–369MathSciNetCrossRefGoogle Scholar
- McLachlan G, Krishnan T (2007) The EM algorithm and extensions. Wiley, HobokenzbMATHGoogle Scholar
- Meyer R (1970) The validity of a family of optimization methods. SIAM J Control 8(1):41–54MathSciNetzbMATHCrossRefGoogle Scholar
- Mitchell D, Selman B, Levesque H (1992) Hard and easy distributions and SAT problems. Proc Tenth Natl Conf Artif Intell 92:459–465Google Scholar
- MOSEK ApS (2013) MOSEK version 7.0. http://www.mosek.com
- Mueller JB, Larsson R (2008) Collision avoidance maneuver planning with robust optimization. In: International ESA conference on guidance, navigation and control systems, TraleeGoogle Scholar
- Mutapcic A, Boyd S (2009) Cutting-set methods for robust convex optimization with pessimizing oracles. Optim Methods Softw 24(3):381–406MathSciNetzbMATHCrossRefGoogle Scholar
- Muu LD (1985) A convergent algorithm for solving linear programs with an additional reverse convex constraint. Kybernetika 21(6):428–435MathSciNetzbMATHGoogle Scholar
- Naghsh MM, Modarres-Hashemi M, ShahbazPanahi S, Soltanalian M, Stoica P (2013) Unified optimization framework for multi-static radar code design using information-theoretic criteria. IEEE Trans Signal Process 61(21):5401–5416CrossRefGoogle Scholar
- Nam GJ, Cong J (eds) (2007) Modern circuit placement. Springer, New YorkGoogle Scholar
- Ndiaye BM, Pham Dinh T, Le Thi HA (2012) DC programming and DCA for large-scale two-dimensional packing problems. Springer, New YorkCrossRefGoogle Scholar
- Niu YS, Pham Dinh T (2014) DC programming approaches for BMI and QMI feasibility problems. Adv Comput Methods Knowl Eng 6:37–63zbMATHCrossRefGoogle Scholar
- Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New YorkzbMATHGoogle Scholar
- Pham Dinh T, Le Thi HA (1997) Convex analysis approach to DC programming: theory, algorithms, and applications. Acta Math Vietnam 22(1):289–355MathSciNetzbMATHGoogle Scholar
- Pham Dinh T, Le Thi HA (1998) A DC optimization algorithm for solving the trust-region subproblem. SIAM J Optim 8(2):476–505MathSciNetzbMATHCrossRefGoogle Scholar
- Pham Dinh T, Le Thi HA (2014) Recent advances in DC programming and DCA. Trans Comput Intell XIII 13:1–37CrossRefGoogle Scholar
- Pham Dinh T, Souad EB (1986) Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. In: Hiriart-Urruty JB (ed) FERMAT Days 85: mathematics for optimization. Elsevier Scince Publishers B. V., Amsterdam, pp 249–271Google Scholar
- Pham Dinh T, Souad EB (1988) Duality in D.C. (difference of convex functions) optimization. subgradient methods. In: International Series of Numerical Mathematics, vol 84, Birkhäuser BaselGoogle Scholar
- Pham Dinh T, Le Thi HA, Akoa F (2008) Combining DCA (DC algorithms) and interior point techniques for large-scale nonconvex quadratic programming. Optim Methods Softw 23(4):609–629MathSciNetzbMATHCrossRefGoogle Scholar
- Pham Dinh T, Nguyen CN, Le Thi HA (2010) An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J Glob Optim 48(4):595–632MathSciNetzbMATHCrossRefGoogle Scholar
- Powell MJD (1978) A fast algorithm for nonlinearly constrained optimization calculations. Springer, New York, pp 144–157zbMATHGoogle Scholar
- Robinson SM (1972) A quadratically-convergent algorithm for general nonlinear programming problems. Math Program 3(1):145–156MathSciNetzbMATHCrossRefGoogle Scholar
- Shulman J, Ho J, Lee A, Awwal I, Bradlow H, Abbeel P (2013) Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: science and systems, vol 9. pp 1–10Google Scholar
- Singh SP, Sharma RRK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30(5):425–433CrossRefGoogle Scholar
- Smola AJ, Vishwanathan SVN, Hofmann T (2005) Kernel methods for missing variables. In: Proceedings of 10th international workshop on artificial intelligence and statisticsGoogle Scholar
- Soland RM (1971) An algorithm for separable nonconvex programming problems II: nonconvex constraints. Manag Sci 17(11):759–773MathSciNetzbMATHCrossRefGoogle Scholar
- Specht E (2013) Packomania. http://www.packomania.com/
- Stiefel E (1935–1936) Richtungsfelder und fernparallelismus in n-dimensionalem mannig faltigkeiten. Comment Math Helv 8:305–353Google Scholar
- Stoica P, Babu P (2012) SPICE and LIKES: two hyperparameter-free methods for sparse-parameter estimation. Signal Process 92(8):1580–1590CrossRefGoogle Scholar
- Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetzbMATHCrossRefGoogle Scholar
- Thoai NV, Tuy H (1980) Convergent algorithms for minimizing a concave function. Math Oper Res 5(4):556–566MathSciNetzbMATHCrossRefGoogle Scholar
- Toh KC, Todd MJ, Tutuncu RH (1999) SDPT3—a MATLAB software package for semidefinite programming. Optim Methods Softw 11:545–581MathSciNetzbMATHCrossRefGoogle Scholar
- Tutuncu RH, Toh KC, Todd MJ (2003) Solving semidfinite-quadratic-linear programs using SDPT3. Math Program 95(2):189–217MathSciNetzbMATHCrossRefGoogle Scholar
- Tuy H (1983) On outer approximation methods for solving concave minimization problems. Acta Math Vietnam 8(2):3–34MathSciNetzbMATHGoogle Scholar
- Tuy H (1986) A general deterministic approach to global optimization via D.C. programming. N-Holl Math Stud 129:273–303MathSciNetzbMATHCrossRefGoogle Scholar
- Tuy H, Horst R (1988) Convergence and restart in branch-and-bound algorithms for global optimization. Applications to concave minimization and DC optimization problems. Math Program 41(2):161–183MathSciNetzbMATHCrossRefGoogle Scholar
- Wilson RB (1963) A simplicial algorithm for concave programming. PhD thesis, Gradaute School of Business Administration, Harvard UniversityGoogle Scholar
- Yamada S, Tanino T, Inuiguchi M (2000) Inner approximation method for a reverse convex programming problem. J Optim Theory Appl 107(2):355–389MathSciNetzbMATHCrossRefGoogle Scholar
- Yu CNJ, Joachims T (2009) Learning structural SVMs with latent variables. In: Proceedings of the 26th annual international conference on machine learning, pp 1169–1176Google Scholar
- Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915–936zbMATHCrossRefGoogle Scholar
- Zangwill WI (1969) Nonlinear programming: a unified approach. Prentice-Hall Inc, Englewood CliffszbMATHGoogle Scholar
- Zillober C (2001) Global convergence of a nonlinear programming method using convex optimization. Numer Algorithms 27(3):265–289MathSciNetzbMATHCrossRefGoogle Scholar