Advertisement

Optimization and Engineering

, Volume 17, Issue 2, pp 333–358 | Cite as

Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization

  • Charles Audet
  • Sébastien Le Digabel
  • Christophe TribesEmail author
Article

Abstract

Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer simulation. The subject of this work is the mesh adaptive direct search (mads) class of algorithms for blackbox optimization. We propose a way to dynamically scale the mesh, which is the discrete spatial structure on which mads relies, so that it automatically adapts to the characteristics of the problem to solve. Another objective of the paper is to revisit the mads method in order to ease its presentation and to reflect recent developments. This new presentation includes a nonsmooth convergence analysis. Finally, numerical tests are conducted to illustrate the efficiency of the dynamic scaling, both on academic test problems and on a supersonic business jet design problem.

Keywords

Blackbox optimization Derivative-free optimization  Mesh adaptive direct search Dynamic scaling 

Mathematics Subject Classification

90C30 90C56 65K05 62P30 

Notes

Acknowledgments

The authors wish to thank Michael Kokkolaras for making the Supersonic Business Jet Design problem available. We also thank the referees for their constructive comments. Work of the first author was supported by NSERC Grant 239436. The second author was supported by NSERC Grant 418250. The first and second authors are supported by AFOSR FA9550-12-1-0198.

References

  1. Abramson MA, Audet C, Dennis JE Jr, Le Digabel S (2009) OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J Optim 20(2):948–966MathSciNetCrossRefzbMATHGoogle Scholar
  2. Adjengue L, Audet C, Ben I, Yahia IB (2014) A variance-based method to rank input variables of the mesh adaptive direct search algorithm. Optim Lett 8(5):1599–1610MathSciNetCrossRefzbMATHGoogle Scholar
  3. Agte JS, Sobieszczanski-Sobieski J, Sandusky RRJ (1999) Supersonic business jet design through bilevel integrated system synthesis. In: Proceedings of the World Aviation Conference, volume SAE Paper No. 1999–01-5622, San Francisco, CA, 1999. MCB University Press, BradfordGoogle Scholar
  4. Audet C (2004) Convergence results for generalized pattern search algorithms are tight. Optim Eng 5(2):101–122MathSciNetCrossRefzbMATHGoogle Scholar
  5. Audet C, Béchard V, Le Digabel S (2008) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim 41(2):299–318MathSciNetCrossRefzbMATHGoogle Scholar
  6. Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217MathSciNetCrossRefzbMATHGoogle Scholar
  7. Audet C, Dennis JE Jr (2009) A Progressive Barrier for Derivative-Free Nonlinear Programming. SIAM J Optim 20(1):445–472MathSciNetCrossRefzbMATHGoogle Scholar
  8. Audet C, Dennis JE Jr, Le Digabel S (2008) Parallel space decomposition of the mesh adaptive direct search algorithm. SIAM J Optim 19(3):1150–1170MathSciNetCrossRefzbMATHGoogle Scholar
  9. Audet C, Dennis JE Jr, Le Digabel S (2010) Globalization strategies for mesh adaptive direct search. Comput Optim Appl 46(2):193–215MathSciNetCrossRefzbMATHGoogle Scholar
  10. Audet C, Ianni A, Le Digabel S, Tribes C (2014) Reducing the number of function evaluations in mesh adaptive direct search algorithms. SIAM J Optim 24(2):621–642MathSciNetCrossRefzbMATHGoogle Scholar
  11. Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29(2):610–611CrossRefzbMATHGoogle Scholar
  12. Conn AR, Le Digabel S (2013) Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim Methods Softw 28(1):139–158MathSciNetCrossRefzbMATHGoogle Scholar
  13. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MOS-SIAM series on optimization. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  14. Coope ID, Price CJ (2000) Frame-based methods for unconstrained optimization. J Optim Theory Appl 107(2):261–274MathSciNetCrossRefzbMATHGoogle Scholar
  15. Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776MathSciNetCrossRefzbMATHGoogle Scholar
  16. Dennis Jr JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, NJ, 1983. Reissued in 1996 by SIAM Publications, Philadelphia, as, Vol. 16 in the series Classics in Applied MathematicsGoogle Scholar
  17. Fletcher R (1980) Practical methods of optimization, volume 1: unconstrained optimization. Wiley, ChichesterzbMATHGoogle Scholar
  18. García-Palomares UM, Rodríguez JF (2002) New sequential and parallel derivative-free algorithms for unconstrained optimization. SIAM J Optim 13(1):79–96MathSciNetCrossRefzbMATHGoogle Scholar
  19. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, LondonzbMATHGoogle Scholar
  20. Gould N, Orban D, Toint P (2015) CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput Optim Appl 60(3):545–557. Code available at http://ccpforge.cse.rl.ac.uk/gf/project/cutest/wiki
  21. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2(1):84–90MathSciNetCrossRefzbMATHGoogle Scholar
  22. Hough PD, Kolda TG, Torczon V (2001) Asynchronous parallel pattern search for nonlinear optimization. SIAM J Sci Comput 23(1):134–156MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kolda TG, Lewis RM, Torczon V (2006) Stationarity results for generating set search for linearly constrained optimization. SIAM J Optim 17(4):943–968MathSciNetCrossRefzbMATHGoogle Scholar
  25. Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw 37(4):44:1–44:15MathSciNetCrossRefGoogle Scholar
  26. Liseikin VD (2009) Grid generation methods. Springer, BerlinzbMATHGoogle Scholar
  27. Lucidi S, Sciandrone M (2002) On the global convergence of derivative-free methods for unconstrained optimization. SIAM J Optim 13(1):97–116MathSciNetCrossRefzbMATHGoogle Scholar
  28. Marsaglia G (1972) Choosing a point from the surface of a sphere. Ann Math Stat 43(2):645–646CrossRefzbMATHGoogle Scholar
  29. Martínez JM, Sobral FNC (2013) Constrained derivative-free optimization on thin domains. J Glob Optim 56(3):1217–1232MathSciNetCrossRefzbMATHGoogle Scholar
  30. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245MathSciNetzbMATHGoogle Scholar
  31. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100MathSciNetCrossRefzbMATHGoogle Scholar
  32. Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20(1):172–191MathSciNetCrossRefzbMATHGoogle Scholar
  33. Nocedal J, Wright SJ (1999) Numerical optimization. Springer Series in Operations Research. Springer, New YorkCrossRefzbMATHGoogle Scholar
  34. Papalambros PY, Wilde DJ (2000) Principles of optimal design: modeling and computation, 2nd edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  35. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25MathSciNetCrossRefzbMATHGoogle Scholar
  36. Tosserams S, Kokkolaras M, Etman LFP, Rooda JE (2010) A non-hierarchical formulation of analytical target cascading. J Mech Des 132(5):051002-1–051002-13CrossRefGoogle Scholar
  37. Van Dyke B, Asaki TJ (2013) Using QR decomposition to obtain a new instance of mesh adaptive direct search with uniformly distributed polling directions. J Optim Theory Appl 159(3):805–821MathSciNetCrossRefzbMATHGoogle Scholar
  38. Van Loan CF (1985) How near is a stable matrix to an unstable matrix. Contemp Math 47:465–478MathSciNetCrossRefzbMATHGoogle Scholar
  39. Vicente LN, Custódio AL (2012) Analysis of direct searches for discontinuous functions. Math Programm 133(1–2):299–325MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Charles Audet
    • 1
  • Sébastien Le Digabel
    • 1
  • Christophe Tribes
    • 1
    Email author
  1. 1.Département de mathématiques et génie industriel, GERADÉcole Polytechnique de MontréalQuébecCanada

Personalised recommendations