Advertisement

Optimization and Engineering

, Volume 16, Issue 1, pp 225–246 | Cite as

On the efficient solution of a patch problem with multiple elliptic inclusions

  • F. Schury
  • J. Greifenstein
  • G. Leugering
  • M. StinglEmail author
Article

Abstract

We present an asymptotic approach to find optimal rotations of orthotropic material inclusions inside an isotropic linear elastic matrix. We compute approximate optimal solutions with respect to compliance and a stress based cost functional. We validate the local and global quality of the candidate solutions by means of finite element based parametric optimization algorithms. In particular, we devise a lower bound algorithm based on the free material optimization approach. Several numerical experiments are performed for different traction scenarios.

Keywords

Material optimization Material orientation Eshelby theorem Asymptotic expansions 

Notes

Acknowledgments

We would like to thank S. A. Nazarov for his valuable comments on a preprint of the manuscript. We also thank J. Sokołowski for fruitful discussions about the topics treated in this paper and for providing valuable insights. Furthermore, the authors gratefully acknowledge the support of the Cluster of Excellence ’Engineering of Advanced Materials’ at the University of Erlangen-Nuremberg, which is funded by the German Research Foundation (DFG) within the framework of its ’Excellence Initiative’. The authors are also indebted to the DFG for funding this research work within the Collaborative Research Centre 814: Additive Manufacturing (subproject C2).

References

  1. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer, New YorkGoogle Scholar
  2. Eshelby J (1980) Dislocations in solids. North-Holland, AmsterdamGoogle Scholar
  3. Fedorov AV, Cherkaev AV (1983) Choice of optimal orientation of axes of elastic symmetry for an orthotropic plate. Mech Solids 18:135–142Google Scholar
  4. Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498. doi: 10.1016/S0022-5096(99)00043-5 CrossRefzbMATHMathSciNetGoogle Scholar
  5. Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131CrossRefzbMATHMathSciNetGoogle Scholar
  6. Haslinger J, Kočvara M, Leugering G, Stingl M (2010) Multidisciplinary free material optimization. SIAM J Appl Math 70(7):2709–2728CrossRefzbMATHMathSciNetGoogle Scholar
  7. Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Opt 43:811–825. doi: 10.1007/s00158-011-0625-z CrossRefzbMATHGoogle Scholar
  8. Kobelev V (2010) ’Bubble-and-grain’ method and criteria for optimal positioning inhomogeneities in topological optimization. Struct Multidiscip Opt 40:117–135. doi: 10.1007/s00158-009-0400-6 CrossRefzbMATHMathSciNetGoogle Scholar
  9. Kočvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57:79–100CrossRefzbMATHMathSciNetGoogle Scholar
  10. Kočvara M, Stingl M (2007) Free material optimization for stress constraints. Struct Multidiscip Opt 33:323–335. doi: 10.1007/s00158-007-0095-5 CrossRefGoogle Scholar
  11. Leugering G, Nazarov S, Schury F, Stingl M (2012) The Eshelby theorem and application to the optimization of an elastic patch. SIAM J Appl Math 72(2):512–534. doi: 10.1137/110823110 CrossRefzbMATHMathSciNetGoogle Scholar
  12. Lewiński T, Sokołowski J (2003) Energy change due to the appearance of cavities in elastic solids. Int J Solids Struct 40(7):1765–1803. doi: 10.1016/S0020-7683(02)00641-8 CrossRefzbMATHGoogle Scholar
  13. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, New YorkzbMATHGoogle Scholar
  14. Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124. doi: 10.1002/we.132 CrossRefGoogle Scholar
  15. Nazarov SA (2001) The damage tensor and measures. 2. invariant integrals in solids with sparsely placed defects. Mech Solids 36(2):104–113Google Scholar
  16. Nazarov SA (2009) The Eshelby theorem and a problem on an optimal patch. St Petersburg Math J 21(5):791–818CrossRefGoogle Scholar
  17. Nazarov SA, Sokołowski J (2003) Asymptotic analysis of shape functionals. J Math Pures Appl 82(2):125–196CrossRefzbMATHMathSciNetGoogle Scholar
  18. Nazarov SA, Specovius-Neugebauer M, Sokołowski J (2010) Polarization matrices in anisotropic heterogeneous elasticity. Asymptot Anal 68(4):189–249zbMATHMathSciNetGoogle Scholar
  19. Pedersen P (1989) On optimal orientation of orthotropic materials. Struct Multidiscip Opt 1:101–106. doi: 10.1007/BF01637666 CrossRefGoogle Scholar
  20. Pedersen P (1991) On thickness and orientational design with orthotropic materials. Struct Multidiscip Opt 3:69–78. doi: 10.1007/BF01743275 CrossRefGoogle Scholar
  21. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067. doi: 10.1016/S0022-5096(96)00114-7 CrossRefMathSciNetGoogle Scholar
  22. Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027. doi: 10.1002/nme.1259 CrossRefzbMATHGoogle Scholar
  23. Stingl M, Kočvara M, Leugering G (2009) A sequential convex semidefinite programming algorithm with an application to multiple-load free material optimization. SIAM J Opt 20(1):130–155. doi: 10.1137/070711281 CrossRefzbMATHGoogle Scholar
  24. Stolpe M, Svanberg K (2003) Modelling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739. doi: 10.1002/nme.700 CrossRefzbMATHMathSciNetGoogle Scholar
  25. Thomsen J (1991) Optimization of composite discs. Struct Multidiscip Opt 3:89–98. doi: 10.1007/BF01743277 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Schury
    • 1
  • J. Greifenstein
    • 1
  • G. Leugering
    • 1
  • M. Stingl
    • 1
    Email author
  1. 1.Chair of Applied Mathematics 2, Cluster of Excellence ‘Engineering of Advanced Materials’University of Erlangen-NurembergErlangenGermany

Personalised recommendations