Optimization and Engineering

, Volume 15, Issue 2, pp 533–573 | Cite as

Mixed-integer linear methods for layout-optimization of screening systems in recovered paper production

  • Armin Fügenschuh
  • Christine Hayn
  • Dennis Michaels


The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt the production process. For the mechanical separation process of fibers from stickies a separator screen is used. This machine has one input feed and two output streams, called the accept and the reject. In the accept the fibers are concentrated, whereas the reject has a higher concentration of stickies. The machine can be controlled by setting its reject rate. But even when the reject rate is set properly, after just a single screening step, the accept still has too many stickies, or the reject too many fibers. To get a better separation, several separators have to be assembled into a network. From a mathematical point of view this problem can be seen as a multi-commodity network flow design problem with a nonlinear, controllable distribution function at each node. We present a nonlinear mixed-integer programming model for the simultaneous selection of the network’s topology and the optimal setting of each separator. Numerical results are obtained via different types of linearization of the nonlinearities and the use of mixed-integer linear solvers, and compared with state-of-the-art global optimization software.


Mixed-integer linear programming Nonlinear programming Piecewise linear approximation Global optimization Linear relaxation Topology optimization Network design 



We thank Prof. Dr.-Ing. Samuel Schabel and Dipl.-Ing. Klaus Villforth of the chair of paper technology and mechanical process engineering at Technische Universität Darmstadt for posing the problem and fruitful discussions. We also thank Björn Geiß ler and Antonio Morsi for providing an implementation for ordering triangulations. We thank Stefan Vigerske (GAMS) for his helpful hints about GAMS. The computational results were achieved on computer hardware and software licenses provided by the Zuse Institute Berlin (ZIB). The work of Christine Hayn was partly supported by the ’Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt. The submitted version was finished while the third author, Dennis Michaels, was at the Institute for Operations Research at ETH Zürich and financially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Centre “Integrated Chemical Processes in Liquid Multi-phase Systems” (CRC/Transregio 63 “InPROMPT”). Dennis Michaels thanks the DFG for their financial support


  1. Achterberg T (2009) Scip: solving constraint integer programs. Math Program Comput 1(1):1–41. Accessed 13 Feb 2014Google Scholar
  2. Ahmed S, Vielma JP, Nemhauser G (2009) Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper Res 58(2):303–315Google Scholar
  3. Almin KE, Steenberg B (1954) The capacity problem in single series screen cascades—studies in screening theory ii. Sven Papperstidning 57(2):37–40Google Scholar
  4. Arrow KJ, Enthoven AC (1961) Quasi-concave programming. Econometrica 29(4):779–800CrossRefMATHMathSciNetGoogle Scholar
  5. Ballerstein M, Kienle A, Kunde C, Weismantel R, Michaels D Towards global optimization of combined distillation–crystallization processes for the separation of closely boiling mixtures. In: Pistikopoulos EN, Georgiadis MC, Kokossis AC (eds) 21th European Symposium on Computer Aided Process Engineering—ESCAPE 21. Elsevier, Amsterdam, 2011, pp 552–556Google Scholar
  6. Ballerstein M, Michaels D, Seidel-Morgenstern A, Weismantel R (2010) A theoretical study of continuous counter-current chromatography for adsorption isotherms with inflection points. Comp Chem Eng 34(4):447–459CrossRefGoogle Scholar
  7. Ballerstein M, Michaels D, Vigerske S (2013) Linear underestimators for bivariate functions with a fixed convexity behavoir. Technical report, ZIB Report 13-02, Konrad-Zuse-Zentrum für Informationstechnik Berlin (Germany). (revision in preparation)Google Scholar
  8. Bartholdi JJ, Goldsman P (2001) Continuous spatial indexing of surfaces. Part 1: standard triangulations. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  9. Bauer MH, Stichlmair J (1996) Struktursynthese und Optimierung nicht-idealer Rektifizierprozesse. Chemie Ingenieur Technik 68:911–916CrossRefGoogle Scholar
  10. Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw (Special Issue: GLOBAL OPTIMIZATION) 24(4–5):597–634CrossRefMATHGoogle Scholar
  11. Benson HP (2004) On the construction of convex and concave envelope formulas for bilinear and fractional functions on quadrilaterals. Comput Optim Appl 27:5–22CrossRefMATHMathSciNetGoogle Scholar
  12. Bergamini ML, Aguirre P, Grossmann IE (2005) Logic-based outer approximation for globally optimal synthesis of process networks. Comput Chem Eng 29:1914–1933CrossRefGoogle Scholar
  13. Bergamini ML, Grossmann IE, Scenna N, Aguirre P (2008) An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput Chem Eng 32:477–493CrossRefGoogle Scholar
  14. Bixby RE (2002) Solving real-world linear programs: a decade and more of progress. Oper Res 50(1):1–13CrossRefMathSciNetGoogle Scholar
  15. Cameron SH (1966) Piece-wise linear approximations. Technical report, IIT Research InstituteGoogle Scholar
  16. Cantoni A (1971) Optimal curve fitting with piecewise-linear functions. IEEE Trans Comput C 20:59–67CrossRefMATHMathSciNetGoogle Scholar
  17. Dantzig G, Johnson S, White W (1959) A linear programming approach to the chemical equilibrium problem. Manag Sci 5:38–43CrossRefMathSciNetGoogle Scholar
  18. Dantzig GB (1963) Linear programming and extensions. Princeton University Press, LondonMATHGoogle Scholar
  19. de Boor C (2001) A practical guide to splines. Springer, BerlinMATHGoogle Scholar
  20. Der Verband Deutscher Papierfabriken e.V. (VDP) (2007) Papier Kompass. Accessed 13 Feb 2014
  21. Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36:307–339CrossRefMATHMathSciNetGoogle Scholar
  22. Ehrgott M (2000) Multicriteria optimization. Springer, BerlinCrossRefMATHGoogle Scholar
  23. Floudas CA (1987) Separation synthesis of multicomponent feed streams into multicomponent product streams. AIChE J 33:540–550CrossRefGoogle Scholar
  24. Floudas CA (1995) Nonlinear and mixed-integer optimization. Fundamentals and applications. Oxford University Press, New YorkMATHGoogle Scholar
  25. Franke M, Górak A, Strube J (2004) Auslegung und Optimierung von hybriden Trennverfahren. Chemie Ingenieur Technik 76:199–210CrossRefGoogle Scholar
  26. Franke MB, Nowotny N, Ndocko EN, Górak A, Strube J (2008) Design and optimization of a hybrid distillation/melt-crystallization process. AIChE J 54(11):2925–2942CrossRefGoogle Scholar
  27. Frey T, Brusis D, Stichlmair J, Bauer MH, Glanz S (2000) Systematische Prozesssynthese mit Hilfe mathematischer Methoden. Chemie Ingenieur Technik 72:812–821CrossRefGoogle Scholar
  28. Friedler F, Tarjan K, Huang YW, Fan LT (1993) Graph-theoretic approach to process synthesis: polynomial algorithm for maximal structure generation. Comput Chem Eng 17:929–942CrossRefGoogle Scholar
  29. Fügenschuh A, Herty M, Klar A, Martin A (2006) Combinatorial and continuous models for the optimization of traffic flows on networks. SIAM J Optim 16:1155 – 1176CrossRefMATHMathSciNetGoogle Scholar
  30. Galor O (2006) Discrete dynamical systems. Springer, New YorkGoogle Scholar
  31. Gangadwala J, Kienle A, Haus U-U, Michaels D, Weismantel R (2006) Global bounds on optimal solutions for the production of 2,3-dimethylbutene-1. Ind Eng Chem Res 45(7):2261–2271CrossRefGoogle Scholar
  32. Gavrilovic MM (1975) Optimal approximation of convex curves by functions which are piecewise linear. J of Math Anal Appl 52:260–282CrossRefMATHMathSciNetGoogle Scholar
  33. Geißler B, Martin A, Morsi A, Schewe L (2010) Using piecewise linear functions for solving MINLPs. In: IMA Volume on MINLP. Springer, BerlinGoogle Scholar
  34. Geoffrion AM (1972) Generalized benders decomposition. J Optim Theory Appl 10(4):237–260CrossRefMATHMathSciNetGoogle Scholar
  35. Grossmann IE (1985) Mixed-integer programming approache for the synthesis of integrated process flowsheets. Comput Chem Eng 9:463–482CrossRefGoogle Scholar
  36. Grossmann IE, Aguirre PA, Barttfeld M (2005) Optimal synthesis of complex distillation columns using rigorous models. Comput Chem Eng 29:1203–1215CrossRefGoogle Scholar
  37. Gürth DA (2007) Approximation von bivariaten Funktionen mittels Orthogonalitätsrelationen für lineare Splines. Master’s thesis, TU Darmstadt, Fachbereich MathematikGoogle Scholar
  38. Hamman B, Chen J (1994) Data point selection for piecewise linear curve approximation. Comput Aided Geom Des 11(3):289–301CrossRefGoogle Scholar
  39. Haus U-U, Michaels D, Seidel-Morgenstern A, Weismantel R (2007) A method to evaluate the feasibility of TMB chromatography for reduced efficiency and purity requirements based on discrete optimization. Comput Chem Eng 31(11):1525–1534CrossRefGoogle Scholar
  40. Heckl I, Kovacs Z, Friedler F, Fan LT (2003) Super-structure generation for separation network synthesis involving different separation methods. Chem Eng Trans 3:1209–1214Google Scholar
  41. IBM ILOG CPLEX (2010) Accessed 13 Feb 2014
  42. Imai H, Iri M (1986) An optimal algorithm for approximating a piecewise linear function. J Inf Process 9:159–162MATHMathSciNetGoogle Scholar
  43. Jach M, Michaels D, Weismantel R (2008) The convex envelope of (n–1)-convex functions. SIAM J Optim 19(3):1451–1466CrossRefMATHMathSciNetGoogle Scholar
  44. Johnson EL, Nemhauser GL, Savelsbergh MWP (2000) Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J Comput 12(1):2–23CrossRefMATHMathSciNetGoogle Scholar
  45. Keha AB, de Farias IR, Nemhauser GL (2004) Models for representing piecewise linear cost functions. Oper Res Lett 32(1):44–48CrossRefMATHMathSciNetGoogle Scholar
  46. Khajavirad A, Sahidinidis NV (2012) Convex envelopes of products of convex and component-wise concave functions. J Glob Optim 52:391–409CrossRefMATHGoogle Scholar
  47. Khajavirad A, Sahinidis NV (2013) Convex envelopes generated from finitely many compact convex sets. Math Program Ser A 137:371–408CrossRefMATHMathSciNetGoogle Scholar
  48. Koch T(2004) Rapid mathematical programming. PhD thesis, Technische Universität Berlin. ZIB-Report 04-58Google Scholar
  49. Kraemer K, Kossack S, Marquardt W (2009) Efficient optimization-based design of distillation processes for homogeneous azeotropic mixtures. Ind Eng Chem Res 48:6749–6764CrossRefGoogle Scholar
  50. Kubat J, Steenberg B (1955) Screening at low particle concentrations—studies in screening theory III. Sven Papperstidning 58(9):319–324Google Scholar
  51. Lee GS (1982) Piecewise linear approximation of multivariate functions. Bell Syst Tech J 61:1463–1486CrossRefMATHGoogle Scholar
  52. Lee J, Wilson D (2001) Polyhedral methods for piecewise-linear functions. I: the lambda method. Discret Appl Math 108(3):269–285CrossRefMATHMathSciNetGoogle Scholar
  53. Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math Program 103(2, Ser. B):251–282CrossRefMATHMathSciNetGoogle Scholar
  54. Locatelli M (2010) Convex envelopes for quadratic and polynomial functions over polytopes. Accessed 13 Feb 2014
  55. Locatelli M, Schoen F (2009) On the convex envelopes and underestimators for bivariate functions. Accessed 17 Nov 2009
  56. Lowe JK (1984) Modelling with integer variables. PhD thesis, Georgia Institute of TechnologyGoogle Scholar
  57. Manis G, Papakonstantinou G, Tsanakas P (1977) Optimal piecewise linear approximation of digitized curves. In: 13th International Conference on Digital Signal Processing Proceedings, DSP 97, Volume: 2. Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, IEEE Xplore, pp 1079-1081. doi: 10.1109/ICDSP.1997.628552
  58. Markowitz H, Manne A (1957) On the solution of discrete programming-problems. Ecometrica 25:84–110CrossRefMATHMathSciNetGoogle Scholar
  59. McCormick GP (1976) Computability of global solutions to factorable nonconvex programs. I: convex underestimating problems. Math Program 10:147–175CrossRefMATHMathSciNetGoogle Scholar
  60. Meyer CA, Floudas CA (2003) Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas Christodoulos A, Pardalos PM (eds) Frontiers in global optimization. Kluwer Academic Publishers, Dordrecht, pp 327–352Google Scholar
  61. Meyer CA, Floudas CA (2004) Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J Glob Optim 29:125–155CrossRefMATHMathSciNetGoogle Scholar
  62. Meyer CA, Floudas CA (2005) Convex envelopes for edge-concave functions. Math Program Ser B 103:207–224CrossRefMATHMathSciNetGoogle Scholar
  63. Moritz S (2006) A mixed integer approach for the transient case of gas network optimization. PhD thesis, TU Darmstadt, Fachbereich MathematikGoogle Scholar
  64. Muraki M, Hayakawa T (1984) Separation process synthesis for multicomponent products. J Chem Eng Jpn 17:533CrossRefGoogle Scholar
  65. Muraki M, Hayakawa T (1987) Multicomponent product separation synthesis with separation sharpness. J Chem Eng Jpn 20:195–198CrossRefGoogle Scholar
  66. Nath R, Motard RL (1981) Evolutionary synthesis of separation processes. AIChE J 27:578–587CrossRefGoogle Scholar
  67. Nemhauser GL, Vielma JP (2008) Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Lecture Notes in Computer Science. vol 5035, pp 199–213. Springer, New YorkGoogle Scholar
  68. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley Interscience, New YorkMATHGoogle Scholar
  69. Nishida N, Stephanopoulos G, Westerberg AW (1981) A review of process synthesis. AIChE J 27:321–351CrossRefGoogle Scholar
  70. Ortega JM (1972) Iterative solution of nonlinear equations in several variables. Academic Press, New YorkGoogle Scholar
  71. Padberg M (2000) Approximating separable nonlinear functions via mixed zero-one programs. Oper Res Lett 27:1–5CrossRefMATHMathSciNetGoogle Scholar
  72. Pozo C, Guillén-Gosálbez G, Sorribas A, Jeménez L (2011) A spatial branch-and-bound framework for the global optimization of kinetic models of metabolic networks. Ind Eng Chem Res 50:5225–5238CrossRefGoogle Scholar
  73. Rockafellar RT (1970) Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, PrincetonMATHGoogle Scholar
  74. Rosenthal RE (1988) GAMS: A user’s guide. The Scientific Press, Redwood CityGoogle Scholar
  75. Sahinidis NV, Tawarmalani M (2005) BARON 7.2.5: Global optimization of mixed-integer nonlinear programsGoogle Scholar
  76. Schönberger C (2007) Linearization methods for the optimization of screening processes in the recovered paper production. Master’s thesis, TU DarmstadtGoogle Scholar
  77. Schwarz HR, Köckler N (2006) Numerische Mathematik. Teubner Verlag, WiesbadenMATHGoogle Scholar
  78. Skiborowski M, Harwardt A, Marquardt W (2013) Conceptual design of distillation-based hybrid separation processes. Ann Rev Chem Biomol Eng 4:45–68Google Scholar
  79. Steenberg B (1953) Principles of screening system design—studies in screening theory I. Sven Papperstidning 56:771–778Google Scholar
  80. Stone H (1961) Approximation of curves by line segments. Math Comput 15:40–47CrossRefMATHGoogle Scholar
  81. Tawarmalani M, Richard J-P, Xiong C (2013) Explicit convex and concave envelopes through polyhedral subdivisions. Math Program Ser A 138(1-2):531–578CrossRefMATHMathSciNetGoogle Scholar
  82. Tawarmalani M, Sahinidis NV (2001) Semidefinite relaxations of fractional programs via novel convexification techniques. J Glob Optim 20:137–158CrossRefMATHMathSciNetGoogle Scholar
  83. Tawarmalani M, Sahinidis NV (2002) Convex extensions and envelopes of lower semi-continuous functions. Math Program A 93:247–263CrossRefMATHMathSciNetGoogle Scholar
  84. Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math Program 99:563–591CrossRefMATHMathSciNetGoogle Scholar
  85. Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Program 103(2, Ser. B):225–249CrossRefMATHMathSciNetGoogle Scholar
  86. The MathWorks. Matlab version 7.9 (R2009b), 2009Google Scholar
  87. Tomek I (1974) Two algorithms for piecewise-linear continuous approximation of functions of one variable. IEEE Trans Comput 23:445–448CrossRefMATHGoogle Scholar
  88. Tomlin JA (1981) A suggested extension of special ordered sets to nonseparable nonconvex programming problems. In: Studies on graphs and discrete programming (Brussels, 1979), volume 11 of Ann. Discrete Math., pp 359–370. North-HollandGoogle Scholar
  89. Urselmann M, Barkmann S, Sand G, Engell S (2011) Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng 35:787–805CrossRefGoogle Scholar
  90. Valkama J-P (2006) Erabeitung eines Analysewerkzeugs für Altpapier verarbeitende Papierfabriken zur objektiven Bewertung der Grenzen der Stickyabtrennung durch Sortierprozesse. Abschlussbericht AiF-Projekt 18990 N. Technical report, Fachgebiet Papierfabrikation und Mechanische Verfahrenstechnik, TU DarmstadtGoogle Scholar
  91. Valkama J-P (2007) Optimisation of Low Consistency Fine Screening Processes in Recycled Paper Production, volume 1 of Fortschritt-Berichte Papiertechnik /Progress in Paper Technology 1. ShakerGoogle Scholar
  92. Vandewalle J (1975) On the calculation of the piecewise linear approximation to a discrete function. IEEE Trans Comput 24:843–846CrossRefMATHGoogle Scholar
  93. Wilson DL (1998) Polyhedral methods for piecewise-linear functions. PhD thesis, University of Kentucky, Department of MathematicsGoogle Scholar
  94. Wolsey LA (1998) Integer programming. Wiley Interscience, New YorkMATHGoogle Scholar
  95. Wunderling R (1996) Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Universität BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Armin Fügenschuh
    • 1
  • Christine Hayn
    • 2
  • Dennis Michaels
    • 3
  1. 1.Helmut-Schmidt-Universität/Universität der Bundeswehr HamburgHamburgGermany
  2. 2.Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  3. 3.Technische Universität DortmundDortmundGermany

Personalised recommendations