Optimization and Engineering

, Volume 15, Issue 4, pp 945–972 | Cite as

Redundant robust topology optimization of truss

  • Daniel P. Mohr
  • Ina Stein
  • Thomas Matzies
  • Christina A. Knapek


A common problem in the optimization of structures is the handling of uncertainties in the parameters. If the parameters appear in the constraints, the uncertainties can lead to an infinite number of constraints. Usually the constraints have to be approximated by finite expressions to generate a computable problem. Here, using the example of topology optimization of a truss, a method is proposed to deal with such uncertainties by utilizing robust optimization techniques. This leads to an approach without the necessity of any approximation.

Another common problem in the optimization of structures is the consideration of possible damages. The typical approach is to prevent these damages by a convenient structure—this concept is known as safe-life. The method developed here applies the principle of redundancy to resist damages, which is the design philosophy of fail-safe. In general this leads to a high dimensional partitioning problem. By using a linear ansatz we get a computable problem.

Finally, robust and redundant methods are combined, and simple numerical examples of typical problems illustrate the application of the methods.

Our new redundant robust topology optimization of truss, based on known concepts of different research fields, gives a structure which is not only “safe” for parameter perturbations but for failure of bars, too. This introduces the fail-safe concept to structural optimization.


Structural optimization Robustness Redundancy Robust optimization Uncertainty Truss topology optimization Sizing optimization Ground structure Coding theory Redundant Fail-safe 


  1. Belzunce F, Martínez-Puertas H, Ruiz JM (2011) On optimal allocation of redundant components for series and parallel systems of two dependent components. J Stat Plan Inference 141(9):3094–3104. doi: 10.1016/j.jspi.2011.03.031 CrossRefzbMATHGoogle Scholar
  2. Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016. doi: 10.1137/S1052623495291951 CrossRefMathSciNetzbMATHGoogle Scholar
  3. Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805. doi: 10.1287/moor.23.4.769 CrossRefMathSciNetzbMATHGoogle Scholar
  4. Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Multidiscip Optim 7:141–159. doi: 10.1007/BF01742459 CrossRefGoogle Scholar
  5. Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218. doi: 10.1016/j.cma.2007.03.003 CrossRefMathSciNetzbMATHGoogle Scholar
  6. Calafiore G, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35:189–200. doi: 10.1007/s00158-007-0145-z CrossRefMathSciNetzbMATHGoogle Scholar
  7. Cornuéjols G (2008) Valid inequalities for mixed integer linear programs. Math Program 112(1):3–44. doi: 10.1007/s10107-006-0086-0 CrossRefMathSciNetzbMATHGoogle Scholar
  8. Dakin RJ (1965) A tree-search algorithm for mixed integer programming problems. Comput J 8:250–255. doi: 10.1093/comjnl/8.3.250 CrossRefMathSciNetzbMATHGoogle Scholar
  9. Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193:2221–2237. doi: 10.1016/j.cma.2003.12.055 CrossRefzbMATHGoogle Scholar
  10. Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of optimal structures. J Méc 3(1):25–52 Google Scholar
  11. Gomory RE (1958) Outline of an algorithm for integer solutions to linear programs. Bull Am Math Soc 64(5):275–279. doi: 10.1090/S0002-9904-1958-10224-4 CrossRefMathSciNetzbMATHGoogle Scholar
  12. Goux JP, Leyffer S (2002) Solving large minlps on computational grids. Optim Eng 3(3):327–346. doi: 10.1023/A:1021047328089 CrossRefMathSciNetzbMATHGoogle Scholar
  13. Heise W, Quattrocchi P (1995) Informations- und Codierungstheorie. Springer, Berlin CrossRefzbMATHGoogle Scholar
  14. Hoshiya M, Yamamoto K (2002) Redundancy index of lifeline systems. J Eng Mech 128(9):961–968. doi: 10.1061/(ASCE)0733-9399(2002)128:9(961) CrossRefGoogle Scholar
  15. Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):467–520. CrossRefMathSciNetGoogle Scholar
  16. Makhorin A (2010) GNU linear programming kit. Department for Applied Informatics, Moscow Aviation, Moscow. Version 4.45 edn.
  17. Marti K (2003) Stochastic optimization methods in optimal engineering design under stochastic uncertainty. Z Angew Math Mech 83(12):795–811. doi: 10.1002/zamm.200310072 CrossRefMathSciNetzbMATHGoogle Scholar
  18. Maute K, Frangopol DM (2003) Reliability-based design of mems mechanisms by topology optimization. Comput Struct 81(8–11):813–824. doi: 10.1016/S0045-7949(03)00008-7. K.J Bathe 60th Anniversary Issue CrossRefGoogle Scholar
  19. Michell AGM (1904) The limits of economy of material in frame structures. Philos Mag 8(47):589–597. doi: 10.1080/14786440409463229 CrossRefzbMATHGoogle Scholar
  20. Mohr DP (2011) Redundante topologieoptimierung. PhD thesis, Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik, Neubiberg.
  21. Mohr DP (2012) TTRR—Truss Topology Robust Redundant., Version 2012-03-10
  22. Mohr DP, Stein I, Matzies T (2012) Knapek CA Robust Topology Optimization of Truss with Regard to Volume. Mathematics, Optimization and Control. arXiv:1109.3782v2 [math.OC]
  23. Neumann JV, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton. zbMATHGoogle Scholar
  24. Patterson DA, Gibson GA, Katz RH (1987) A case for redundant arrays of inexpensive disks (raid). Tech Rep UCB/CSD-87-391, EECS Department, University of California, Berkeley. doi: 10.1145/50202.50214,
  25. Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New York zbMATHGoogle Scholar
  26. Reza FM (1961) An introduction to information theory. McGraw-Hill, New York Google Scholar
  27. Shannon CE (1948) A mathematical theory of communication. Tech Rep 1, The Bell System Technical Journal.
  28. Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21(5):1154–1157. doi: 10.2307/168933 CrossRefMathSciNetzbMATHGoogle Scholar
  29. Taylor JR (1997) An introduction to error analysis, 2nd edn. University Science Books, Sausalito Google Scholar
  30. Žiha K (2000) Redundancy and robustness of systems of events. Probab Eng Mech 15(4):347–357. doi: 10.1016/S0266-8920(99)00036-3 CrossRefGoogle Scholar
  31. Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11(3):355–379. doi: 10.1007/s11081-010-9107-1 CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel P. Mohr
    • 1
  • Ina Stein
    • 2
  • Thomas Matzies
    • 3
  • Christina A. Knapek
    • 1
  1. 1.Max-Planck-Institut für Extraterrestrische PhysikGarchingGermany
  2. 2.Institute of Mathematics and Computer Applications, Dept. of Aerospace EngineeringUniversität der Bundeswehr MünchenNeubibergGermany
  3. 3.Institute of Lightweight Structures, Department of Aerospace EngineeringUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations