Advertisement

Optimization and Engineering

, Volume 11, Issue 4, pp 501–532 | Cite as

A method for simulation based optimization using radial basis functions

  • Stefan Jakobsson
  • Michael Patriksson
  • Johan Rudholm
  • Adam WojciechowskiEmail author
Article

Abstract

We propose an algorithm for the global optimization of expensive and noisy black box functions using a surrogate model based on radial basis functions (RBFs). A method for RBF-based approximation is introduced in order to handle noise. New points are selected to minimize the total model uncertainty weighted against the surrogate function value. The algorithm is extended to multiple objective functions by instead weighting against the distance to the surrogate Pareto front; it therefore constitutes the first algorithm for expensive, noisy and multiobjective problems in the literature. Numerical results on analytical test functions show promise in comparison to other (commercial) algorithms, as well as results from a simulation based optimization problem.

Keywords

Simulation based optimization Radial basis functions Multiobjective Noise Response surface Surrogate model Black box function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audet C, Savard G, Zghal W (2008) Multiobjective optimization through a series of single-objective formulations. SIAM J Optim 19(1):188–210 zbMATHCrossRefMathSciNetGoogle Scholar
  2. Björkman M, Holmström K (2000) Global optimization of costly nonconvex functions. Optim Eng 1:373–397 zbMATHCrossRefMathSciNetGoogle Scholar
  3. Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V (1998) Optimization using surrogate objectives on a helicopter test example. In: Computational methods for optimal design and control, Arlington, VA, 1997. Progr systems control theory, vol 24. Birkhäuser Boston, Boston, pp 49–58 Google Scholar
  4. Booker AJ, Dennis J Jr, Frank PD, Serafin DB, Torczon V, Torsset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17:1–13 CrossRefGoogle Scholar
  5. Conn AR, Scheinberg K, Toint PL (1997) Recent progress in unconstrained nonlinear optimization without derivatives. Math Program 79(1–3):397–414. Lectures on mathematical programming (97) (Lausanne, 1997) MathSciNetGoogle Scholar
  6. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. (Electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  7. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7(3):205–230 CrossRefGoogle Scholar
  8. Deb K, Thiele L, Laumanns M, Zitzler E (2001) Scalable test problems for evolutionary multi-objective optimization. Technical report, Computer engineering and networks laboratory (TIK), Swiss federal institute of technology (ETH) Google Scholar
  9. Dixon LCW, Szegö G (1978) The global optimization problem: an introduction. North-Holland, Amsterdam Google Scholar
  10. Gutmann HM (2001) A radial basis function method for global optimization. J Glob Optim 19:201–227 zbMATHCrossRefMathSciNetGoogle Scholar
  11. Hanne T (2006) Applying multiobjective evolutionary algorithms in industrial projects. In: Küfer KH, Rommelfanger H, Tammer C, Winkler K (eds) Multicriteria decision making and fuzzy systems. Theory, methods and applications. Shaker Verlag, Aachen, pp 125–142 Google Scholar
  12. Huang D, Allen TT, Notz WI, Zeng N (2006) Global optimization of stochastic black-box systems via sequential kriging meta-models. J Glob Optim 34:441–466 zbMATHCrossRefMathSciNetGoogle Scholar
  13. Huyer W, Neumaier A (1999) Global optimization by multilevel coordinate search. J Glob Optim 14:331–355 zbMATHCrossRefMathSciNetGoogle Scholar
  14. Jakobsson S, Saif-Ul-Hasnain M, Rundqvist R, Edelvik F, Andersson B, Patriksson M, Ljungqvist M, Lortet D, Wallesten J (2008) Combustion engine optimization: a multiobjective approach. Optim Eng (in press) Google Scholar
  15. Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383 zbMATHCrossRefGoogle Scholar
  16. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79:157–181 zbMATHCrossRefMathSciNetGoogle Scholar
  17. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492 zbMATHCrossRefMathSciNetGoogle Scholar
  18. Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10:50–66 CrossRefGoogle Scholar
  19. Kohavi R (1999) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14:th international joint conference on artificial intelligence (IJCAI). Morgan Kaufmann, San Mateo, pp 1137–1145 Google Scholar
  20. Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Schwefel HP, Männer R (eds) Parallel problem solving from nature. 1st workshop, PPSN I, vol 496. Springer, Berlin, pp 193–197 CrossRefGoogle Scholar
  21. Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and now. J Comput Appl Math 124:191–207 zbMATHCrossRefMathSciNetGoogle Scholar
  22. Messac A, Mullur AA (2008) A computationally efficient metamodeling approach for expensive multiobjective optimization. Optim Eng 9(1):37–67 CrossRefMathSciNetGoogle Scholar
  23. Miettinen K (1999) Nonlinear multiobjective optimization. International series in operations research & management science, vol 12. Kluwer Academic, Dordrecht zbMATHGoogle Scholar
  24. Powell MJD (2006) The NEWUOA software for unconstrained optimization without derivatives. In: Large-scale nonlinear optimization. Nonconvex optim appl, vol 83. Springer, New York, pp 255–297 CrossRefGoogle Scholar
  25. Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using radial basis functions. J Glob Optim 31:153–171 zbMATHCrossRefMathSciNetGoogle Scholar
  26. Regis RG, Shoemaker CA (2007) A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J Comput 19(4):497–509 CrossRefMathSciNetGoogle Scholar
  27. Rudholm J, Wojciechowski A (2007) A method for simulation based optimization using radial basis functions. Master’s thesis, Chalmers university of technology, Göteborg, www.chalmers.se/math/EN/research/research-groups/optimization/master-thesis-projects
  28. Saif-Ul-Hasnain M (2008) Simulation based multiobjective optimization of diesel combustion engines. Master’s thesis, Chalmers university of technology Google Scholar
  29. Shor NZ (1985) Minimization methods for nondifferentiable functions. Springer series in computational mathematics, vol 3. Springer, Berlin Google Scholar
  30. Wendland H (2005) Scattered data approximation. Cambridge monographs on applied and computational mathematics, vol 17. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  31. Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric Latin hypercube designs. J Stat Plan Inference 90:149–159 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stefan Jakobsson
    • 1
  • Michael Patriksson
    • 2
    • 3
  • Johan Rudholm
    • 2
    • 3
  • Adam Wojciechowski
    • 2
    • 3
    Email author
  1. 1.Fraunhofer–Chalmers Research Centre for Industrial MathematicsGothenburgSweden
  2. 2.Department of Mathematical SciencesChalmers University of TechnologyGothenburgSweden
  3. 3.Department of Mathematical SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations