Advertisement

Optimization and Engineering

, Volume 11, Issue 4, pp 597–610 | Cite as

Microwave tomographic imaging as a sequence of topology optimization problems

  • Eddie WadbroEmail author
Article
  • 90 Downloads

Abstract

Microwave tomography is an imaging technique with unique features for medical applications. This article presents a reconstruction procedure using a sequence of problems solved by topology optimization techniques. Each problem in this sequence is constructed using the solution of the previous one in combination with available a priori information about the unknown permittivities. Numerical examples illustrate the reconstruction procedure for the case when the sizes of the objects are of the same order as the wavelength. A good estimate of the permittivities is obtained using a priori information that the unknown permittivities vary within a given box and a bound on how lossy the unknown objects are.

Keywords

Microwave tomography Topology optimization Helmholtz equation Inverse scattering problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abubakar A, van den Berg PM, Mallorqui JJ (2002) Imaging of biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans Microw Theory Tech 50(7):1761–1771 CrossRefGoogle Scholar
  2. Bendsøe MP, Sigmund O (2003) Topology optimization. Theory, methods, and applications. Springer, Berlin Google Scholar
  3. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459 zbMATHCrossRefGoogle Scholar
  4. Bulyshev AE, Souvorov AE, Semenov SY, Posukh VG, Sizov YE (2004) Three-dimensional vector microwave tomography: theory and computational experiments. Inverse Probl 20(4):1239–1259 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Dobson DC (2006) Optimal mode coupling in simple planar waveguides. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials, 2006, pp 301–310 Google Scholar
  6. Doi K (2005) Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 78:S3–S19 CrossRefGoogle Scholar
  7. Fang Q, Meaney PM, Paulsen KD (2004) Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information. IEEE Trans Microw Theory Tech 52(8):1866–1875 CrossRefGoogle Scholar
  8. Fhager A, Hashemzadeh P, Persson M (2006) Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm. IEEE Trans Biomed Eng 53(8):1594–1604 CrossRefGoogle Scholar
  9. Joachimowicz N, Pichota C, Hugonin JP (1991) Inverse scattering: an iterative numerical method for electromagnetic imaging. IEEE Trans Antennas Propag 39(12):1742–1753 CrossRefGoogle Scholar
  10. Joines WT, Zhang Y, Li C, Jirtle RL (1994) The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys 21(4):547–550 CrossRefGoogle Scholar
  11. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. SIAM, Philadelphia Google Scholar
  12. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108 CrossRefGoogle Scholar
  13. Meaney PM, Paulsen KD, Hartov A, Crane RK (1996) Microwave imaging for tissue assessment: initial evaluation in multitarget tissue-equivalent phantoms. IEEE Trans Biomed Eng 43(9):878–890 CrossRefGoogle Scholar
  14. Semenov SY, Svenson RH, Boulyshev AE, Souvorov AE, Borisov VY, Sizov Y, Starostin AN, Dezern KR, Tatsis GP, Baranov VY (1996) Microwave tomography: two-dimensional system for biological imaging. IEEE Trans Biomed Eng 43(9):869–877 CrossRefGoogle Scholar
  15. Semenov SY, Bulyshev AE, Souvorov AE, Nazarov AG, Sizov YE, Svenson RH, Posukh VG, Pavlovsky A, Repin PN, Tatsis GP (2000) Three-dimensional microwave tomography: experimental imaging of phantoms and biological objects. IEEE Trans Microw Theory Tech 48(6):1071–1074 CrossRefGoogle Scholar
  16. Semenov SY, Bulyshev AE, Abubakar A, Posukh VG, Souvorov AE, van den Berg PM, Williams TC (2005) Microwave-tomographic imaging of the high dielectric-contrast object using different image-reconstruction approaches. IEEE Trans Microw Theory Tech 53(7):2284–2294 CrossRefGoogle Scholar
  17. Semenov S, Kellam J, Althausen P, Williams T, Abubakar A, Bulyshev A, Sizov Y (2007) Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment. Phys Med Biol 52(18):5705–5719 CrossRefGoogle Scholar
  18. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75 CrossRefGoogle Scholar
  19. Souvorov AE, Bulyshev AE, Semenov SY, Svenson RH, Nazarov AG, Sizov YE, Tatsis GP (1998) Microwave tomography: a two-dimensional Newton iterative scheme. IEEE Trans Microw Theory Tech 46(11):1654–1659 CrossRefGoogle Scholar
  20. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373 zbMATHCrossRefMathSciNetGoogle Scholar
  21. Wadbro E, Berggren M (2008) Microwave tomography using topology optimization techniques. SIAM J Sci Comput 30(3):1613–1633 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Information Technology, Division of Scientific ComputingUppsala UniversityUppsalaSweden

Personalised recommendations