Optimization and Engineering

, Volume 10, Issue 2, pp 301–312 | Cite as

A visual procedure for optimal response transformations and curvature specifications

  • Han Son SeoEmail author


Consider a general regression model in which a covariate enters nonlinearly with a power transformed response variable. Under this formulation a dynamic graphical procedure using inverse response plot and forward response plot is suggested for finding an optimal response transformation parameter value and capturing a curvature. Examples demonstrate that the method works well and also can be used to detect the influential cases.


Curvature Dynamic graphics Regression Optimal response transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson AC, Riani M (2000) Robust diagnostic regression analysis. Springer, Berlin zbMATHGoogle Scholar
  2. Berk KN, Booth DE (1995) Seeing a curve in multiple regression. Technometrics 37(3):385–398 zbMATHCrossRefGoogle Scholar
  3. Birkes D, Dodge Y (1993) Alternative methods of regression. Wiley, New York zbMATHGoogle Scholar
  4. Box GEP, Cox DR (1964) An analysis of transformations (with discussion). J R Stat Soc B 26(1):211–252 zbMATHMathSciNetGoogle Scholar
  5. Cambanis S, Huang S, Simons G (1981) On the theory of elliptically contoured distributions. J Multivar Anal 11(3):368–385 zbMATHCrossRefMathSciNetGoogle Scholar
  6. Chambers JM, Cleveland WS, Kleiner B, Tukey P (1983) Graphical methods for data analysis. Duxbury, N. Scituate zbMATHGoogle Scholar
  7. Cook RD (1993) Exploring partial residual plots. Technometrics 35(4):351–362 zbMATHCrossRefMathSciNetGoogle Scholar
  8. Cook RD, Olive DJ (2001) A note on visualizing response transformations. Technometrics 43(4):443–449 CrossRefMathSciNetGoogle Scholar
  9. Cook RD, Weisberg S (1989) Regression diagnostics with dynamic graphics (with discussion). Technometrics 31(3):227–311 MathSciNetGoogle Scholar
  10. Cook RD, Weisberg S (1994a) An introduction to regression graphics. Wiley, New York zbMATHCrossRefGoogle Scholar
  11. Cook RD, Weisberg S (1994b) Transforming a response variable for linearity. Biometrika 81(4):731–737 zbMATHCrossRefGoogle Scholar
  12. Daniel C, Wood FS (1980) Fitting equations to data, 2nd edn. Wiley, New York zbMATHGoogle Scholar
  13. Eaton ML (1986) A characterization of spherical distribution. J Multivar Anal 20(2):272–276 zbMATHCrossRefMathSciNetGoogle Scholar
  14. Gorman JW, Toman RJ (1966) Selection of variables for fitting equations to data. Technometrics 8(1):27–51 CrossRefGoogle Scholar
  15. Larsen WA, McCleary SJ (1972) The use of partial residual plots in regression analysis. Technometrics 14(3):781–790 CrossRefGoogle Scholar
  16. Li KC, Duan N (1989) Regression analysis under link violation. Ann Stat 17(3):1009–1052 zbMATHCrossRefMathSciNetGoogle Scholar
  17. Mallows CL (1986) Augmented partial residual plots. Technometrics 28(4):313–320 CrossRefMathSciNetGoogle Scholar
  18. Tierney L (1990) Lisp-stat. Wiley, New York zbMATHGoogle Scholar
  19. Weisberg S (2005) Applied linear regression, 3rd edn. Wiley, New York zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Applied StatisticsKonkuk UniversitySeoulSouth Korea

Personalised recommendations