Optimization and Engineering

, Volume 9, Issue 2, pp 143–160 | Cite as

Spent potliner treatment process optimization using a MADS algorithm

Article

Abstract

In this paper, the general problem of chemical process optimization defined by a computer simulation is formulated. It is generally a nonlinear, non-convex, non-differentiable optimization problem over a disconnected set. A brief overview of popular optimization methods from the chemical engineering literature is presented. The recent mesh adaptive direct search (MADS) algorithm is detailed. It is a direct search algorithm, so it uses only function values and does not compute or approximate derivatives. This is useful when the functions are noisy, costly or undefined at some points, or when derivatives are unavailable or unusable. In this work, the MADS algorithm is used to optimize a spent potliners (toxic wastes from aluminum production) treatment process. In comparison with the best previously known objective function value, a 37% reduction is obtained even if the model failed to return a value 43% of the time.

Keywords

Simulation optimization Mesh adaptive direct search (MADS) algorithm Non-smooth optimization Spent potliners treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson MA (2007) NOMADm optimization software. http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html
  2. Abramson MA (2005) Second order behavior of pattern search. SIAM J Optim 16(2):515–530 MATHCrossRefMathSciNetGoogle Scholar
  3. Abramson MA, Audet C (2006) Convergence of mesh adaptive direct search to second-order stationary points. SIAM J Optim 17(2):606–619 MATHCrossRefMathSciNetGoogle Scholar
  4. Aspentech (2007) http://www.aspentech.com/
  5. Audet C, Dennis JE Jr (2004) A pattern search filter approach for nonlinear programming without derivatives. SIAM J Optim 14(4):980–1010 MATHCrossRefMathSciNetGoogle Scholar
  6. Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217 MATHCrossRefMathSciNetGoogle Scholar
  7. Audet C, Orban D (2006) Finding optimal algorithmic parameters using the mesh adaptive direct search algorithm. SIAM J Optim 17(3):642–664 MATHCrossRefMathSciNetGoogle Scholar
  8. Audet C, Béchard V, Le Digabel S (2007) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim. doi: 10.1007/s10898-007-9234-1
  9. Béchard V (2004) Optimisation d’un procédé de traitement des brasques. Master’s thesis, Ecole Polytechnique de Montréal Google Scholar
  10. Biegler LT, Grossmann IE (2004) Retrospective on optimization. Comput Chem Eng 28:1169–1192 Google Scholar
  11. Biegler LT, Albuquerque J, Gopal V, Staus G, Ydstie BE (1999) Interior point sqp strategies for large-scale structured process optimization problems. Comput Chem Eng 23:543–554 CrossRefGoogle Scholar
  12. Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V (1998) Optimization using surrogate objectives on a helicopter test example. In: Borggaard J, Burns J, Cliff E, Schreck S (eds) Optimal design and control. Progress in systems and control theory. Birkhäuser, Cambridge, pp 49–58 Google Scholar
  13. Bowden RO, Hall JD (1998) Simulation optimization research and development. In: The 1998 winter conference on simulation, pp 1693–1698 Google Scholar
  14. Choi SH, Manousiouthakis V (1999) A stochastic approach to global optimization of chemical processes. Comput Chem Eng 23:1351–1356 CrossRefGoogle Scholar
  15. Clarke FH (1990) Optimization and nonsmooth analysis. SIAM classics in applied mathematics, vol 5. SIAM, Philadelphia MATHGoogle Scholar
  16. Coope ID, Price CJ (2000) Frame-based methods for unconstrained optimization. J Optim Theory Appl 107:261–274 MATHCrossRefMathSciNetGoogle Scholar
  17. Courbariaux Y (2004) Étude et mise au point d’un procédé de traitement des brasques de l’industrie de l’aluminium. PhD thesis, Ecole Polytechnique de Montreal. Google Scholar
  18. Courbariaux Y, Chaouki J, Guy C (2004) Update on spent potliners treatments: kinetics of cyanides destruction at high temperatures. Ind Eng Chem Res 43:5828–5837 CrossRefGoogle Scholar
  19. Couture G, Audet C, Dennis JE Jr, Abramson MA (2007) The nomad project. http://www.gerad.ca/NOMAD/
  20. Dantzig GB (1993) Linear programming and extensions. Springer, Berlin Google Scholar
  21. Dolan ED, Lewis RM, Torczon V (2003) On the local convergence properties of pattern search. SIAM J Optim 14(2):567–583 MATHCrossRefMathSciNetGoogle Scholar
  22. Edgar TF, Himmelblau DM, Lasdon LS (2003) Optimization of chemical processes, 2nd edn. McGraw-Hill, New York Google Scholar
  23. Hanke M, Li P (2000) Simulated annealing for the optimization of batch distillation processes. Comput Chem Eng 24:1–8 CrossRefGoogle Scholar
  24. Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8:212–219 MATHGoogle Scholar
  25. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181 MATHCrossRefMathSciNetGoogle Scholar
  26. Kokkolaras M, Audet C, Dennis JE Jr (2001) Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim Eng 2(1):5–29 MATHCrossRefMathSciNetGoogle Scholar
  27. Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and now. J Comput Appl Math 124:191–207 MATHCrossRefMathSciNetGoogle Scholar
  28. Lin B, Miller DC (2004) Tabu search algorithm for chemical process optimization. Comput Chem Eng 28(11):2287–2306 CrossRefGoogle Scholar
  29. Lobereiro J, Acevedo J (2004) Process synthesis and design using modular simulators: a genetic algorithm framework. Comput Chem Eng 28:1223–1236 Google Scholar
  30. Marsden AL, Wang M, Dennis JE Jr, Moin P (2004a) Optimal aeroacoustic shape design using the surrogate management framework. Optim Eng 5(2):235–262 MATHCrossRefMathSciNetGoogle Scholar
  31. Marsden AL, Wang M, Dennis JE Jr, Moin P (2004b) Suppression of airfoil vortex-shedding noise via derivative-free optimization. Phys Fluids 16(10):L83–L86 CrossRefGoogle Scholar
  32. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313 Google Scholar
  33. Ouali MS, Aoudjit H, Audet C (2003) Optimisation des stratégies de maintenance. J Eur Syst Autom 37(5):587–605 CrossRefGoogle Scholar
  34. Rockafellar RT (1980) Generalized directional derivatives and subgradients of nonconvex functions. Can J Math 32(2):257–280 MATHMathSciNetGoogle Scholar
  35. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184 CrossRefMathSciNetGoogle Scholar
  36. Seader JD, Sieder WD, Lewin DR (1999) Process design principles: synthesis, analysis and evaluation. Wiley, New York Google Scholar
  37. Torczon V (1997) Pattern search methods for nonlinear optimization. SIAM J Optim 6:7–11 MathSciNetGoogle Scholar
  38. Zamora JM, Grossmann IE (1998) Continuous global optimization of structured process systems models. Comput Chem Eng 22:1749–1770 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Charles Audet
    • 1
  • Vincent Béchard
    • 2
  • Jamal Chaouki
    • 2
  1. 1.GERAD and Department of Mathematics and Industrial EngineeringÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Department of Chemical EngineeringÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations