Optimization and Engineering

, Volume 8, Issue 2, pp 215–238 | Cite as

Magnetic resonance tissue quantification using optimal bSSFP pulse-sequence design

  • Christopher Kumar Anand
  • Renata Sotirov
  • Tamás Terlaky
  • Zhuo Zheng
Article

Abstract

We propose a merit function for the expected contrast to noise ratio in tissue quantifications, and formulate a nonlinear, nonconvex semidefinite optimization problem to select locally-optimal balanced steady-state free precession (bSSFP) pulse-sequence design variables. The method could be applied to other pulse sequence types, arbitrary numbers of tissues, and numbers of images. To solve the problem we use a mixture of a grid search to get good starting points, and a sequential, semidefinite, trust-region method, where the subproblems contain only linear and semidefinite constraints. We give the results of numerical experiments for the case of three tissues and three, four or six images, in which we observe a better increase in contrast to noise than would be obtained by averaging the results of repeated experiments. As an illustration, we show how the pulse sequences designed numerically could be applied to the problem of quantifying intraluminal lipid deposits in the carotid artery.

Keywords

Magnetic resonance imaging Balanced steady-state free precession Dixon method Semidefinite programming Trust-region algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert A (1969) Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J Appl Math 17:434–440 CrossRefMathSciNetGoogle Scholar
  2. Ben Tal A, Nemirovski A (2001) Lectures on modern convex optimization. Analysis, algorithms and engineering applications. MPS/SIAM Series on Optimization, vol 1. SIAM, Philadelphia MATHGoogle Scholar
  3. Berstekas DP (1995) Nonlinear programming. Athena Scientific, USA Google Scholar
  4. Carr HY (1958) Steady-state free precession in nuclear magnetic resonance. Phys Rev 112:1693–1701 CrossRefGoogle Scholar
  5. Conn AR, Goud NIM, Toint PL (2000) Trust region methods. MPS–SIAM series on optimization Google Scholar
  6. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194 Google Scholar
  7. Freeman R, Hill HDW (1971) Phase and intensity anomalities in Fourier transform NMR. J Magn Reson 4:366–383 Google Scholar
  8. Freund RW, Jarre F (2003) A sensitivity analysis and a convergence result for a sequential semidefinite programming method. In: Numerical analysis manuscript, No 03-4-09. Bell Laboratories, Murray Hill Google Scholar
  9. Glover G (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530 CrossRefGoogle Scholar
  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging, physical principles and sequence design. Wiley–Liss, New York Google Scholar
  11. Hanicke W, Vogel HU (2003) An analytical solution for the SSFP signal in MRI. Magn Reson Med 49:771–775 CrossRefGoogle Scholar
  12. Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG (2001) Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 46:149–158 CrossRefGoogle Scholar
  13. Hargreaves BA, Vasanawala SS, Nayak KS, Brittain JH, Hu BS, Nishimura DG (2003) Fat-suppressed steady-state free precession imaging using phase detection. Magn Reson Med 50:210–213 CrossRefGoogle Scholar
  14. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge MATHGoogle Scholar
  15. Huang TY, Chung HW, Wang FN, Ko CW, Chen CY (2004) Fat and water separation in balanced steady-state free precession using the Dixon method. Magn Reson Med 51:243–247 CrossRefGoogle Scholar
  16. Jardim SVB, Figueiredo MAT (2003) Automatic contour estimation in fetal ultrasound images. IEEE International Conference on Image Processing ICIP, Barcelona, Spain, (2), pp 1065–1068 Google Scholar
  17. Jaynes ET (1955) Matrix treatment of nuclear induction. Phys Rev 98(4):1099–1105 CrossRefGoogle Scholar
  18. Kruk S, Wolkowicz H (1998) SQ2P, sequential quadratic constrained quadratic programming. In: Advances in nonlinear programming. Kluwer Academic, Dordrecht, pp 177–204 Google Scholar
  19. Liang ZP, Lauterbur PC (1999) Principles of magnetic resonance imaging. IEEE Press Series in Biomedical Engineering Google Scholar
  20. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, San Diego MATHGoogle Scholar
  21. Oppelt A, Graumann R, BarfußH, Fischer H, Hartl W, Schajor W, (1986) FISP—a new fast MRI sequence. Electromedica (English edn) 54:15–18 Google Scholar
  22. Reeder SB, Wen ZF, Yu HZ, Pineda AR, Gold GE, Markl M, Pelc NJ (2004) Multicoil Dixon chemical species separation with an iterative lest-squares estimation method. Magn Reson Med 51:35–45 CrossRefGoogle Scholar
  23. Rybicki FJ, Mulkern RV, Robertson RL, Robson CD, Chung T, Ma J (2001) Fast three-point Dixon MR imaging of the retrobulbar space with low-resolution images for phase correction: comparison with fast spin-echo inversion recovery imaging. Am J Neuroradiol 22:179–1802 Google Scholar
  24. Salibi N, Brown MA (1998) Clinical MR spectroscopy: first principles. Wiley–Liss, New York Google Scholar
  25. Scheffler K (1999) A pictorial description of steady states in fast magnetic resonance imaging. Concept Magn Res 11:291–304 CrossRefGoogle Scholar
  26. Scheffler K (2003) On the transient phase of balanced SSFP sequences. Magn Reson Med 49:781–783 CrossRefGoogle Scholar
  27. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Software 11–12:625–653 MathSciNetGoogle Scholar
  28. Sturm JF (2002) Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim Methods Software 17(6):1105–1154 MATHCrossRefMathSciNetGoogle Scholar
  29. Sutton BP, Noll DC, Fessler JA (2003) Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Trans Med Imaging 22(2):178–188 CrossRefGoogle Scholar
  30. Vasanawala SS, Pauly JM, Nishimura DG (2000) Linear combination steady-state free precession MRI. Magn Reson Med 43:82–90 CrossRefGoogle Scholar
  31. Zur Y, Stokar S, Bendel P (1988) An analysis of fast imaging sequences with steady-state transverse magnetization refocusing. Magn Reson Med 6:175–193 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christopher Kumar Anand
    • 1
  • Renata Sotirov
    • 1
  • Tamás Terlaky
    • 1
  • Zhuo Zheng
    • 1
  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations