Open Systems and Information Dynamics

, Volume 14, Issue 4, pp 397–410 | Cite as

Two-State Dynamics for Replicating Two-Strand Systems

  • Diederik Aerts
  • Marek Czachor
Article

Abstract

We propose a formalism for describing two-strand systems of a DNA type by means of soliton von Neumann equations, and illustrate how it works on a simple example exactly solvably by a Darboux transformation. The main idea behind the construction is the link between solutions of von Neumann equations and entangled states of systems consisting of two subsystems evolving in time in opposite directions. Such a time evolution has analogies in realistic DNA where the polymerazes move on leading and lagging strands in opposite directions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Adleman L.M. (1994). Science 266: 1021CrossRefADSGoogle Scholar
  2. 2.
    T.A. Brown, Genomes, BIOS Scientific Publishers, 1999.Google Scholar
  3. 3.
    Aharonov Y., Bergman P.G., Lebowitz J.L. (1964). Phys. Rev. B 134: 1410ADSGoogle Scholar
  4. 4.
    Aharonov Y., Albert D., Casher A., Vaidman L. (1987). Phys. Lett. A 124: 199CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Vaidman L., Aharonov Y., Albert D. (1987). Phys. Rev. Lett. A 58: 1385CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Aharonov Y., Albert D., Vaidman L. (1988). Phys. Rev. Lett. A 60: 1351CrossRefADSGoogle Scholar
  7. 7.
    Aharonov Y., Vaidman L. (1990). Phys. Rev. A 41: 11CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Aharonov Y., Vaidman L. (1999). Phys. Scripta T 76: 85ADSGoogle Scholar
  9. 9.
    Bohm A., Doebner H.-D., Kielanowski P., eds. (1998) Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces, Springer, BerlinMATHGoogle Scholar
  10. 10.
    R. Penrose and W. Rindler, Spinors and Space-Time, vol. 1, CUP, Cambridge, 1984.Google Scholar
  11. 11.
    Czachor M. (1997). Phys. Lett. 225A: 1MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Czachor M. (1999). Int. J. Theor. Phys. 38: 475, quant-ph/9711054.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Czachor M., Naudts J. (1999). Phys. Rev. E 59: R2498CrossRefADSGoogle Scholar
  14. 14.
    J. Naudts and M. Czachor, in: Nonextensive Statistical Mechanics and its Applications, S. Abe and Y. Okamato, eds., Lecture Notes in Physics 560, 243, Springer, Berlin, 2001.Google Scholar
  15. 15.
    Matveev V.B., Salle M.A. (1991). Darboux Transformations and Solitons. Springer, BerlinMATHGoogle Scholar
  16. 16.
    Leble S.B., Czachor M. (1998). Phys. Rev. E 58: 7091CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Kuna M., Czachor M., Leble S.B. (1999). Phys. Lett. A 225: 42CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Ustinov N.V., Czachor M., Kuna M., Leble S.B. (2001). Phys. Lett. A 279: 333MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    N. V. Ustinov and M. Czachor, in: Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Computation, and Axiomatics, D. Aerts, M. Czachor and T. Durt, eds., World Scientific, Singapore, 2002, 335.Google Scholar
  20. 20.
    Cieśliński J.L., Czachor M., Ustinov N.V. (2003). J. Math. Phys. 44: 1763CrossRefADSMathSciNetMATHGoogle Scholar
  21. 21.
    Aerts D., Czachor M., Gabora L., Kuna M., Posiewnik A., Pykacz J., Syty M. (2003). Phys. Rev. E 67: 051926CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    D. Aerts and M. Czachor, Nonlinearity (2006), q-bio.PE/0411031.Google Scholar
  23. 23.
    V.E. Zakharov and A.B. Shabat, Funk. Anal. Pril. 13, 13 (1979), in Russian.Google Scholar
  24. 24.
    S.P. Novikov, S.V. Manakov, L.P. Pitaevski and V.E. Zakharov, Theory of Solitons, the Inverse Scattering Method, Consultants Bureau, New York, 1984.Google Scholar
  25. 25.
    Levi D., Ragnisco O., Bruschi M. (1980). Nuovo Cim. 58A: 56MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Mikhailov A.V. (1981). Physica D3: 73CrossRefADSGoogle Scholar
  27. 27.
    Neugebauer G., Kramer D. (1983). J. Phys. A: Math. Gen. 16: 1927CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    J. L. Cieśliński, J. Math. Phys. 32, 2395 (1991); ibid. 36, 5670 (1995).Google Scholar
  29. 29.
    S.B. Leble and N. V. Ustinov, in: Nonlinear Theory and its Applications, M. Tanaka and T. Saito, eds., World Scientific, Singapore, 1993, v.2, pp. 547–550.Google Scholar
  30. 30.
    Ustinov N.V. (1998). J. Math. Phys. 39: 976MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Leble S.B. (1998). Computers Math. Applic. 35: 73MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Zaitsev A.A., Leble S.B. (1997). Rep. Math. Phys. 39: 177MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    G. Kaiser, Quantum Physics, Relativity, and Complex Spacetime: Towards a New Synthesis, North-Holland, Amsterdam, 1990.Google Scholar
  34. 34.
    Baake E., Baake M., Wagner H. (1997). Phys. Rev. Lett. 78: 559CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Marek Czachor
    • 1
    • 2
  1. 1.Centrum Leo Apostel (CLEA) and Foundations of the Exact Sciences (FUND)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Katedra Fizyki Teoretycznej i Informatyki Kwantowej Politechnika GdańskaGdańskPoland

Personalised recommendations