Advertisement

Open Systems and Information Dynamics

, Volume 14, Issue 4, pp 371–378 | Cite as

The Jamiołkowski Isomorphism and a Simplified Proof for the Correspondence Between Vectors Having Schmidt Number k and k-Positive Maps

  • Kedar S. RanadeEmail author
  • Mazhar Ali
Article
  • 74 Downloads

Abstract.

Positive maps which are not completely positive are used in quantum information theory as witnesses for convex sets of states, in particular as entanglement witnesses and, more generally, as witnesses for states having Schmidt number not greater than k. Such maps and witnesses are related to k-positive maps, and their properties may be investigated by making use of the Jamiołkowski isomorphism. In this article we review the properties of this isomorphism, noting that there are actually two related mappings bearing that name. As a new result, we give a simplified proof for the correspondence between vectors having Schmidt number k and k-positive maps and thus for the Jamiołkowski criterion for complete positivity. Another consequence is a special case of a result by Choi, namely that k-positivity implies complete positivity, if k is the dimension of the smaller one of the Hilbert spaces on which the operators act.

Keywords

Hilbert Space Orthonormal Basis Schmidt Number Complete Positivity Entanglement Witness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Carteret H.A., Terno D.R., K. Życzkowski  preprint quant-ph/0512167.Google Scholar
  2. 2.
    Cerf N.J., Adami C., Gingrich R.M. (1999). Phys. Rev. A 60: 898CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Choi M.-D. (1972). Can. J. Math. 24: 520zbMATHGoogle Scholar
  4. 4.
    Choi M.-D. (1975). Lin. Alg. Appl. 10: 285zbMATHCrossRefGoogle Scholar
  5. 5.
    Clarisse L. (2005). Phys. Rev. A 71: 032332CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    L. Clarisse, PhD thesis, University of York, preprint quant-ph/0612072.Google Scholar
  7. 7.
    Horodecki M., Horodecki P. (1999). Phys. Rev. A 59: 4206CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Jamiołkowski A. (1972). Rep. Math. Phys. 3: 275CrossRefGoogle Scholar
  9. 9.
    M. Keyl and R. F. Werner, Channels and Maps, in: Lectures on Quantum Information, D. Bruß, G. Leuchs, eds., Wiley-VCH, 2006, pp. 73 – 86.Google Scholar
  10. 10.
    Lindblad G. (1975). Commun. Math. Phys. 40: 147zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000Google Scholar
  12. 12.
    Peres A. (1996). Phys. Rev. Lett. 77: 1413zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    de Pillis J. (1967). Pacific J. Math. 23: 129zbMATHMathSciNetGoogle Scholar
  14. 14.
    Salgado D., Sánchez-Gómez J.L., Ferrero M. (2005). Open Sys. Information Dyn. 12: 55zbMATHCrossRefGoogle Scholar
  15. 15.
    D. Salgado, J. L. Sánchez-Gómez, preprint math-ph/0411074.Google Scholar
  16. 16.
    Sanpera A., Bruβ D., Lewenstein M. (2001). Phys. Rev. A 63: 050301CrossRefADSGoogle Scholar
  17. 17.
    Terhal B.M., Horodecki P. (2000). Phys. Rev. A 61: 040301 (R)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institut für Angewandte PhysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations