Open Systems & Information Dynamics

, Volume 13, Issue 4, pp 463–470

Generation of Entangled Two-Photon Binomial States in Two Spatially Separate Cavities

  • Rosario Lo Franco
  • Giuseppe Compagno
  • Antonino Messina
  • Anna Napoli
Article
  • 13 Downloads

Abstract

We propose a conditional scheme to generate entangled two-photon generalized binomial states inside two separate single-mode high-Q cavities. This scheme requires that the two cavities are initially prepared in entangled one-photon generalized binomial states and exploits the passage of two appropriately prepared two-level atoms one in each cavity. The measurement of the ground state of both atoms is finally required when they exit the cavities. We also give a brief evaluation of the experimental feasibility of the scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935).MATHCrossRefADSGoogle Scholar
  2. [2]
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  3. [3]
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).MATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    J. Preskill, Quantum Information and Computation, in Lecture Notes for Physics 229, http://theory.caltech.edu/ preskill/ph229 (1998).
  5. [5]
    J.A. Bergou, M. Hillery, Phys. Rev. A 55, 4585 (1997).CrossRefADSGoogle Scholar
  6. [6]
    P. Meystre, Cavity Quantum Optics and the Quantum Measurement process, in Progress in Optics XXX, E. Wolf, ed., Elsevier Science Publishers B. V., New York, 1992.Google Scholar
  7. [7]
    A. Messina, Eur. Phys. J. D 18, 379 (2002).ADSGoogle Scholar
  8. [8]
    A. Napoli, A. Messina, G. Compagno, Fortschr. Phys. 51, 81 (2003).MATHCrossRefADSGoogle Scholar
  9. [9]
    D.E. Browne, M. B. Plenio, Phys. Rev. A 67, 012325 (2003).CrossRefADSGoogle Scholar
  10. [10]
    P. Bertet et al., Phys. Rev. Lett. 88, 143601 (2002).CrossRefADSGoogle Scholar
  11. [11]
    D. Stoler, B.E.A. Saleh and M.C. Teich, Opt. Acta 32, 345 (1985).MathSciNetGoogle Scholar
  12. [12]
    R. Lo Franco, G. Compagno, A. Messina and A. Napoli, Phys. Rev. A 72, 053806 (2005).CrossRefADSGoogle Scholar
  13. [13]
    E. T. Jaynes and F.W. Cummings, P.I.E.E.E. 51, 89 (1963).Google Scholar
  14. [14]
    P. Carbonaro, G. Compagno and F. Persico, Phys. Lett. A 73, 97 (1979).CrossRefADSGoogle Scholar
  15. [15]
    S. Haroche, Course 13, Cavity Quantum Electrodynamics, in: Les Houches Session LIII 1990, Systémes Fondamentaux en Optique Quantique, Elsevier Science Publishers B. V., New York, 1992.Google Scholar
  16. [16]
    S. Haroche, Phys. Scripta 102, 128 (2002).CrossRefGoogle Scholar
  17. [17]
    A. Vidiella-Barranco, J. A. Roversi, Phys. Rev. A 67, 5233 (1994).CrossRefADSGoogle Scholar
  18. [18]
    C. C. Gerry, Phys. Rev. A 53, 4583 (1996).CrossRefADSGoogle Scholar
  19. [19]
    A. F. Abouraddy, B.E.A. Saleh, A.V. Sergienko, and M. C. Teich, Phys. Rev. A 64, 050101 (2001).MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    E. Hagley, et al., Phys. Rev. Lett. 79, 1 (1997).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Rosario Lo Franco
    • 1
  • Giuseppe Compagno
    • 1
  • Antonino Messina
    • 1
  • Anna Napoli
    • 1
  1. 1.INFM, MIUR and Dipartimento di Scienze Fisiche ed AstronomicheUniversità di PalermoPalermoItaly

Personalised recommendations