Advertisement

Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems

  • A. Badahmane
  • A. H. Bentbib
  • H. SadokEmail author
Original Paper
  • 89 Downloads

Abstract

In the present paper, we propose a separate approach as a new strategy to solve the saddle point problem arising from the stochastic Galerkin finite element discretization of Stokes problems. The preconditioner is obtained by replacing the (1,1) and (1,2) blocks in the RHSS preconditioner by others well chosen and the parameter α in (2,2) −block of the RHSS preconditioner by another parameter β. The proposed preconditioner can be used as a preconditioner corresponding to the stationary itearative method or to accelerate the convergence of the generalized minimal residual method (GMRES). The convergence properties of the GMRHSS iteration method are derived. Meanwhile, we analyzed the eigenvalue distribution and the eigenvectors of the preconditioned matrix. Finally, numerical results show the effectiveness of the proposed preconditioner as compared with other preconditioners.

Keywords

Krylov subspace method Preconditioner Saddle point Kronecker 

Mathematics Subject Classification (2010)

65F10 65N22 65F50 

Notes

Acknowledgments

The authors would like to thank Laura Dykes for enlightening comments and corrections on an early draft of this manuscript and would like to express their sincere thanks to the referees for their most valuable suggestions.

References

  1. 1.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, Z.-Z., Benzi, M.: Regularized HSS iteration methods for saddle-point. BIT Numer. Math. 57, 287–311 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benzi, M., Wathen, J.A.: Some preconditioning techniques for saddle point problems. Model Order Reduction: Theory. Res. Aspects and Appl. 13, 195–211 (2004)zbMATHGoogle Scholar
  7. 7.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Benner, P., Saak, J., Stoll, M., Weichelt, H.K.: Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bissuel, A., Allaire, G., Daumas, L., Chalot, F., Mallet, M.: Linear systems with multiple right-hand sides with GMRES, an application to aircraft design. ECCOMAS Congress (2016)Google Scholar
  12. 12.
    Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence proprieties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Linear Algebra Appl. 15, 515–533 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle point matrices. SIAM J. Sci. Comput. 27, 1555–1572 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  16. 16.
    Elman, H.C., Ramage, A., Silvester, D.J.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)CrossRefGoogle Scholar
  17. 17.
    Elbouyahyaoui, L., Messaoudi, A., Sadok, H.: Algebraic properties of the block GMRES and block Arnoldi methods. Elect Trans Numer Analysis. 33, 207–220 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ernst, O.G., Powell, C.E., Silvester, D.J., Ullmann, E.: Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput. 31, 1424–1447 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gould, N., Orban, D., Rees, T.: Projected Krylov methods for saddle-point system. SIAM J. Matrix Anal. Appl. 35, 1329–1343 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Huang, Z.-G., Wang, G.-L., LG, Xu, Z. , Cui, J.-J.: A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. Numer. Algor. 75, 1161–1191 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equation. Appl. Numer. Math. 31, 49–43 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parametrized block triangular preconditioners for generalized saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pestana, J., Wathen, A.J.: Combination preconditioning of saddle point systems for positive definiteness. Linear Algebra Appl. 20, 785–808 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pestana, J., Wathen, A.J.: A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36, 273–288 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Powell, C.E., Silvester, D.J: Preconditioning steady-state Navier-Stokes equations with random data. SIAM J. Sci. Comput. 34, A2482–A2506 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rozloznik, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Saad, Y., Schultz, M.: GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)CrossRefGoogle Scholar
  31. 31.
    Sadok, H.: Analysis of the convergence of the minimal and the orthogonal residual methods. Numer. Algor. 40, 101–115 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Salkuyeh, D.K., Masoudi, M.: A new relaxed HSS preconditioner for saddle point problems. Numer. Algor. 74, 781–795 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29, 752–773 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Stoll, M., Wathen, A.: Combination preconditioning and the Bramble-Pasciak preconditioner. SIAM J. Matrix Anal. Appl. 30, 582–608 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, J.-L., Gu, C.-Q.: A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. BIT Numer. Math. 56, 587–604 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–50 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Appliquées et InformatiqueFaculté des Sciences et Techniques- GuelizMarrakechMorocco
  2. 2.Laboratoire de Mathématiques Pures et AppliquéesUniversité du Littoral Côte d’OpaleCalais CedexFrance

Personalised recommendations