Advertisement

Rounding error analysis of divided differences schemes: Newton’s divided differences; Neville’s algorithm; Richardson extrapolation; Romberg quadrature; etc.

  • André Pierro de CamargoEmail author
Original Paper
  • 30 Downloads

Abstract

In this note, we extend the analysis of Camargo (J. Comp. Appl. Math 365, 2020) on the numerical stability of classical Newton’s divided differences to a broader a class of divided differences algorithms that includes Neville’s algorithm for the Lagrange interpolation and some of its particular instances as the Richardson extrapolation and Romberg quadrature. We show that these algorithms are backward stable and we bound the overall numerical error in their computation in finite precision. Our analysis solves a subtle question in numerical Lagrange interpolation that passed unnoticed so far. On the one hand, the Richardson extrapolation and Romberg quadrature have been extensively described as divided differences schemes and their connections with Neville’s algorithm were already highlighted in the literature. On the other hand, the unique algorithm for computing Lagrange interpolants for which backward stability can be ensured (so far) for extrapolation is the first barycentric formula. By showing that Neville’s algorithm is also backward stable for extrapolation, our result consolidates a solid background for the usual representation of the Richardson extrapolation and Romberg quadrature as divided differences schemes.

Keywords

Newton’s divided differences Neville’s algorithm Richardson extrapolation Romberg quadrature Rounding errors 

Notes

References

  1. 1.
    Bauer, F.L., Rutishauser, H., Stiefel, E.: New aspectsin numerical quadrature. Proc. Sympos. Appl. Maths., Vol. 15, American mathematical Society, Providence, RI, pp. 199–218 (1963)Google Scholar
  2. 2.
    Brass, H., Fischer, J.W.: Error bounds in Romberg quadrature. Numer Math. 82, 389–408 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brezinski, C.: Convergence acceleration during the 20th century. J. Comp. Appl. Math. 122, 1–21 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bulirsch, R.: Bemerkungen zur Romberg-Integration. Numer. Math. 6, 6–16 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Camargo, A.: A divergent sequence of Romberg integrals, Submitted workGoogle Scholar
  6. 6.
    Camargo, A.: On the numerical stability of Newton’s formula for Lagrange interpolation. T J. Comp. Appl. Math. 365.  https://doi.org/10.1016/j.cam.2019.112369 (2020)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fischer, J.W.: Romberg quadrature using the Bulirsch sequence. Numer. Math. 90, 509–519 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Håvie, T.: Romberg integration as a problem in interpolation theroy. BIT 17, 418–429 (1977)CrossRefGoogle Scholar
  9. 9.
    Higham. N.: Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics., Philadelphia (2002)Google Scholar
  10. 10.
    Higham, N: The numerical stability of barycentric Lagrange interpolation. IMA J. Num. Anal. 24, 547–556 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joyce, D.C.: Survey of extrapolation processes in Numerical Analysis. SIAM Rev. 13(4), 435–490 (1971)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Laurie, D.P.: Propagation of initial rounding error in Romberg-like quadrature. BIT 15, 277–282 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mascarenhas, W., Camargo, A: The effects of rounding errors in the nodes on barycentric interpolation. Numer. Math. 135 (1), 113–141 (2017). arXiv:1309.7970 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mascarenhas, W.F., Camargo, A.: The backward stability of the second barycentric formula for interpolation. Dolomites Res. Notes Appr. 7, 1–12 (2014). arXiv:1310.2516 Google Scholar
  15. 15.
    Miller, J.C.P.: Neville’s and Romberg’s processes: a fresh appraisal with extensions. Phyl. Trans. Roy. Soc. Ser. A 263, 525–562 (1968)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shanks, J.A.: On forming the Romberg table. J. Comp. Appl. Math. 11, 343–351 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Smith, S.: Lebesgue constants in polynomial interpolation. Annales Mathematicae et Informaticae 33, 109–123 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)CrossRefGoogle Scholar
  19. 19.
    Webb, M., Trefethen, L., Gonnet, P.: Stability of barycentric interpolation formulas for extrapolation. SIAM J. Sci Comp. 34(6), A3009–A3015 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Matemática, Computação e CogniçãoUniversidade Federal do ABC - UFABCSanto AndréBrazil

Personalised recommendations