Advertisement

Analysis and application of the interpolating element-free Galerkin method for extended Fisher–Kolmogorov equation which arises in brain tumor dynamics modeling

  • Mohammad IlatiEmail author
Original Paper
  • 13 Downloads

Abstract

In this paper, the interpolating element-free Galerkin method is applied for solving the nonlinear biharmonic extended Fisher–Kolmogorov equation which arises in brain tumor dynamics modeling. At first, a finite difference formula is utilized for obtaining a time-discrete scheme. The unconditional stability and convergence of the time-discrete method are proved by the energy method. Then, we use the interpolating element-free Galerkin method to approximate the spatial derivatives. An error analysis of the interpolating element-free Galerkin method is proposed for this nonlinear equation. Moreover, this method is compared with some other meshless local weak-form techniques. The main aim of this paper is to show that the interpolating element-free Galerkin is a suitable technique for solving the nonlinear fourth-order partial differential equations especially extended Fisher–Kolmogorov equation. The numerical experiments confirm the analytical results and show the good efficiency of the interpolating element-free Galerkin method for solving this nonlinear biharmonic equation.

Keywords

Extended Fisher–Kolmogorov equation Interpolating element-free Galerkin method Interpolating moving least squares method Error estimate Brain tumor dynamics modeling 

Mathematics Subject Classification (2010)

41A30; 65M99; 65N99 

Notes

Acknowledgments

The author thanks the reviewers for their useful comments and suggestions that improved the paper.

References

  1. 1.
    Ahlers, G., Cannell, D. S.: Vortex-front propagation in rotating Couette-Taylor flow. Phys. Rev. Lett. 50(20), 1583–1586 (1983)CrossRefGoogle Scholar
  2. 2.
    Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Belmonte-Beitia, J., Calvo, G. F., Perez-Garcia, V. M.: Effective particle methods for Fisher–Kolmogorov equations: theory and applications to brain tumor dynamics. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3267–3283 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belytschko, T., Lu, Y. Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37(2), 229–256 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cheng, R., Cheng, Y.: Error estimates for the finite point method. Appl. Numer. Math. 58(6), 884–898 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cheng, Y., Bai, F., Liu, C., Peng, M.: Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method. Int. J. Comput. Mater. Sci. Eng. 5(04), 1650023 (2016)Google Scholar
  7. 7.
    Cheng, Y., Bai, F., Peng, M.: A novel interpolating element-free Galerkin (IEFG) method for twodimensional elastoplasticity. Appl. Math. Model. 38(21-22), 5187–5197 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Danumjaya, P., Pani, A. K.: Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation. J. Comput. Appl. Math. 174(1), 101–117 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Danumjaya, P., Pani, A. K.: Numerical methods for the extended Fisher–Kolmogorov (EFK) equation. Int. J. Numer. Anal. Model. 3(2), 186–210 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dee, G., van Saarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60(25), 2641–2644 (1988)CrossRefGoogle Scholar
  11. 11.
    Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Elphick, C., Coullet, P., Repaux, D.: Nature of spatial chaos. Phys. Rev. Lett 58, 431–434 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gerin, C., Pallud, J., Grammaticos, B., Mandonnet, E., Deroulers, C., Varlet, P., Capelle, L., Taillandier, L., Bauchet, L., Duffau, H., et al.: Improving the time-machine: estimating date of birth of grade II gliomas. Cell Proliferation 45(1), 76–90 (2012)CrossRefGoogle Scholar
  14. 14.
    Guozhen, Z.: Experiments on director waves in nematic liquid crystals. Phys. Rev. Lett. 49(18), 1332–1335 (1982)CrossRefGoogle Scholar
  15. 15.
    Hong-Ping, R., Yu-Min, C., Wu, Z.: An improved boundary element-free method (IBEFM) for two-dimensional potential problems. Chinese Physics B 18(10), 4065–4073 (2009)CrossRefGoogle Scholar
  16. 16.
    Hornreich, R., Luban, M., Shtrikman, S.: Critical behavior at the onset of k-space instability on the λ line. Phys. Rev. Lett. 35(25), 1678–1681 (1975)CrossRefGoogle Scholar
  17. 17.
    Ilati, M., Dehghan, M.: Direct local boundary integral equation method for numerical solution of extended Fisher–Kolmogorov equation. Engineering with Computers 34(1), 203–213 (2018)CrossRefGoogle Scholar
  18. 18.
    Jbabdi, S., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K. R., Pélégrini-Issac, M., Guillevin, R., Benali, H.: Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnetic Resonance in Medicine: an Official Journal of the International Society for Magnetic Resonance in Medicine 54(3), 616–624 (2005)CrossRefGoogle Scholar
  19. 19.
    Kadri, T., Omrani, K.: A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation. Comput. Math. Appl. 61(2), 451–459 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Khiari, N., Omrani, K.: Finite difference discretization of the extended Fisher–Kolmogorov equation in two dimensions. Comput. Math. Appl. 62(11), 4151–4160 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99, 77–97 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Li, X., Zhang, S., Wang, Y., Chen, H.: Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations. Comput. Math. Appl. 71(8), 1655–1678 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, F., Cheng, Y.: The improved element-free Galerkin method based on the nonsingular weight functions for elastic large deformation problems. Int. J. Comput. Mater. Sci. Eng. 7(03), 1850023 (2018)Google Scholar
  25. 25.
    Liu, F., Cheng, Y.: The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels. Int. J. Appl. Mech. 10(04), 1850047 (2018)CrossRefGoogle Scholar
  26. 26.
    Liu, F., Wu, Q., Cheng, Y.: A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems. Int. J. Appl. Mech. 11(01), 1950006 (2019)CrossRefGoogle Scholar
  27. 27.
    Liu, F., Zhao, X., Liu, B.: Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions. Advances in Difference Equations 2017(1), 94 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and their Programming. Springer Science & Business Media, Berlin (2005)Google Scholar
  29. 29.
    Mittal, R., Arora, G.: Quintic B-spline collocation method for numerical solution of the extended Fisher–Kolmogorov equation. Int. J. Appl. Math. Mech. 6 (1), 74–85 (2010)Google Scholar
  30. 30.
    Mittal, R., Dahiya, S.: A study of quintic B-spline based differential quadrature method for a class of semi-linear Fisher–Kolmogorov equations. Alexandria Engineering Journal 55(3), 2893–2899 (2016)CrossRefGoogle Scholar
  31. 31.
    Murray, J.: Mathematical Biology II. Springer, Spatial Models and Biomedical Applications (2003)CrossRefGoogle Scholar
  32. 32.
    Pérez-García, V. M., Bogdanska, M., Martínez-González, A., Belmonte-Beitia, J., Schucht, P., Pérez-Romasanta, L. A.: Delay effects in the response of low-grade gliomas to radiotherapy: a mathematical model and its therapeutical implications. Mathematical medicine and biology: A journal of the IMA 32(3), 307–329 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Sun, F., Wang, J.: Interpolating element-free Galerkin method for the regularized long wave equation and its error analysis. Appl. Math. Comput. 315, 54–69 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sun, F., Wang, J., Cheng, Y.: An improved interpolating element-free Galerkin method for elastoplasticity via nonsingular weight functions. Int. J. Appl. Mech. 8(08), 1650096 (2016)CrossRefGoogle Scholar
  35. 35.
    Sun, F., Wang, J., Cheng, Y., Huang, A.: Error estimates for the interpolating moving least-squares method in n-dimensional space. Appl. Numer. Math. 98, 79–105 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Van Saarloos, W.: Dynamical velocity selection: marginal stability. Physical review letters 58(24), 2571–2574 (1987)CrossRefGoogle Scholar
  37. 37.
    Van Saarloos, W.: Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37(1), 211–229 (1988)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, T., Li, X.: A variational multiscale interpolating element-free Galerkin method for convection-diffusion and Stokes problems. Engineering Analysis with Boundary Elements 82, 185–193 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Zhao, N., Ren, H.: The interpolating element-free Galerkin method for 2D transient heat conduction problems Mathematical Problems in Engineering (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Basic SciencesSahand University of TechnologyTabrizIran

Personalised recommendations