Advertisement

Multiscale radial kernels with high-order generalized Strang-Fix conditions

  • Wenwu Gao
  • Xuan ZhouEmail author
Original Paper
  • 24 Downloads

Abstract

The paper provides a general and simple approach for explicitly constructing multiscale radial kernels with high-order generalized Strang-Fix conditions from a given univariate generator. The resulting kernels are constructed by taking a linear functional to the scaled f -form of the generator with respect to the scale variable. Equivalent divided difference forms of the kernels are also derived; based on which, a pyramid-like algorithm for fast and stable computation of multiscale radial kernels is proposed. In addition, characterizations of the kernels in both the spatial and frequency domains are given, which show that the generalized Strang-Fix condition, the moment condition, and the condition of polynomial reproduction in the convolution sense are equivalent to each other. Hence, as a byproduct, the paper provides a unified view of these three classical concepts. These kernels can be used to construct quasi-interpolation with high approximation accuracy and construct convolution operators with high approximation orders, to name a few. As an example, we construct a quasi-interpolation scheme for irregularly spaced data and derived its error estimates and choices of scale parameters of multiscale radial kernels. Numerical results of approximating a bivariate Franke function using our quasi-interpolation are presented at the end of the paper. Both theoretical and numerical results show that quasi-interpolation with multiscale radial kernels satisfying high-order generalized Strang-Fix conditions usually provides high approximation orders.

Keywords

Radial function Multiscale radial kernel Generalized Strang-Fix condition Generator Fourier transform 

Mathematics Subject Classification (2010)

41A05 41065 65D05 65D10 65D15 

Notes

Acknowledgments

The authors acknowledge the associate editor and the anonymous referee for insightful comments and valuable suggestions.

Funding information

This work is financially supported by NSFC (11871074, 11501006, 61672032), NSFC Key Project (91330201,11631015), SGST (12DZ 2272800), Joint Research Fund by the National Natural Science Foundation of China and Research Grants Council of Hong Kong (11461161006), Fund of Introducing Leaders of Science and Technology of Anhui University (J10117700057) and the 4th Project of Cultivating Backbone of Young Teachers of Anhui University (J01005138), and Anhui Provincial Science and Technology Major Project (16030701091).

References

  1. 1.
    Bozzini, M., Dyn, N., Rossini, M.: Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math. 236, 577–564 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle-Matérn and polyharmonic kernels. Adv. Comput. Math. 39, 129–142 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bozzini, M., Rossini, M., Schaback, R., Volontè, E.: Radial kernels via scale derivatives. Adv. Comput. Math. 41, 277–291 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35, 199–219 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buhmann, M.: Radial functions on compact support. Pocced. Edinburgh. Math. Soci. 41, 33–46 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buhmann, M.: Multivariable Interpolation Using Radial Basis Functions, Ph.D. dissertation, University of Cambridge (1989)Google Scholar
  7. 7.
    Buhmann, M.: Radial basis functions. Acta Numer. 1, 1–38 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buhmann, M.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics. Cambridge Univ. Press, Cambridge (2003)CrossRefGoogle Scholar
  9. 9.
    Cheney, E., Light, W., Xu, Y.: On kernels and approximation orders, Approximation Theory (Memphis, TN). Lecture Notes in Pure and Applied Mathematics, Dekker, NewYork 138, 227–242 (1992)zbMATHGoogle Scholar
  10. 10.
    Dyn, N., Jackson, I., Levin, D., Ron, A.: On multivariate approximation by integer translates of a basis function. Israel J. Math. 78, 95–130 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishers, Singapore (2007)CrossRefGoogle Scholar
  12. 12.
    Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fornberg, B., Larsson, E., Wright, G.: A new class of oscillatory radial basis functions. Comput. Math. Appl. 51, 1209–1222 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gao, W.W., Wu, Z.M.: Quasi-interpolation for linear functional data. J. Comput. Appl. Math. 236, 3256–3264 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gao, W.W., Wu, Z.M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl. Math. 271, 20–30 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gao, W.W., Wu, Z.M.: Constructing radial kernels with higher-order generalized Strang-Fix conditions. Adv. Comput. Math. 43, 1355–1375 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gao, W.W., Zhang, R.: Multiquadric trigonometric spline quasi-interpolation for numerical differentiation of noisy data: a stochastic perspective. Numer. Algor. 77, 243–259 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gao, W.W., Sun, X.P., Wu, Z.M., Zhou, X.: Multivariate Monte Carlo approximation based on scattered data, submittedGoogle Scholar
  19. 19.
    Gao, W.W., Fasshauer, G.E., Sun, X.P., Zhou, X.: Optimality and regularization properties of quasi-interpolation: deterministic and stochastic approaches, submittedGoogle Scholar
  20. 20.
    Jia, R.Q., Lei, J.J.: A new version of Strang-Fix conditions. J. Approx. Theory 74, 221–225 (1993)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kazemi, M.M., Dehghan, M., Bastani, A.F.: On a new family of radial basis functions. J. Comput. A.pl. Math. 328, 75–100 (2018)CrossRefGoogle Scholar
  22. 22.
    Maz’ya, V., Schmidt, G.: Construction of basis functions for high order approximate approximations, Mathematical Aspects of boundary elements methods (Palaiseau, 1998), Chapman and hall/CRC Res. Notes Math. 414, 191–202 (2000)Google Scholar
  23. 23.
    Maz’ya, V., Schmidt, G.: On quasi-interpolation with non-uniformly distributed centers on domains and manifolds. J. Approx. Theory 110, 125–145 (2001)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rabut, C.: An introduction to Schoenberg’s approximation. Comput. Math. Appl. 24, 139–175 (1991)MathSciNetGoogle Scholar
  25. 25.
    Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)zbMATHGoogle Scholar
  26. 26.
    Schaback, R.: The missing Wendland functions. Adv. Comp. Math. 34, 67–81 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Strang, G., Fix, G.: A fourier analysis of the finite-element method. In: Geymonat, G. (ed.) Constructive Aspects of Functional Analysis, pp 793–840. C.I.M.E., Rome (1973)Google Scholar
  28. 28.
    Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wu, Z.M.: Hermite-birkhoff interpolation of scattered data by radial basis functions. Approx. Theory. Appl. 8, 1–10 (1992)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wu, Z.M.: Multivariate compactly supported positive definite radial basis functions. Adv. Comput. Math. 4, 283–292 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wu, Z.M.: Operators on radial functions. J. Comput. Appl. Math. 73, 257–270 (1996)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wu, Z.M.: Compactly supported positive definite radial basis functions and the Strang-Fix condition. Appl. Math Comput. 84, 115–124 (1997)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Statistics, School of EconomicsAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Anhui Engineering Laboratory of Agro-Ecological Big DataAnhui UniversityHefeiPeople’s Republic of China
  3. 3.Shanghai Key Laboratory for Contemporary Applied MathematicsFudan UniversityShanghaiPeople’s Republic of China
  4. 4.School of Mathematical SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations