Advertisement

An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscillatory initial value problems

  • Mohammad Mehdizadeh KhalsaraeiEmail author
  • Ali Shokri
Original Paper
  • 26 Downloads

Abstract

In this paper, we present an explicit six-step singularly P-stable Obrechkoff method of tenth algebraic order for solving second-order linear periodic and oscillatory initial value problems of ordinary differential equations. The advantage of this new singularly P-stable Obrechkoff method is that it is a high-order explicit method, and thus does not require additional predictor stages. The numerical stability and phase properties of the new method is analyzed. Four numerical examples show that the new explicit method is more accurate than Obrechkoff schemes of the same order when applied to the numerical solution of second-order initial value problems with highly oscillatory solutions.

Keywords

Explicit methods Phase-lag Ordinary differential equations Singularly P-stable Symmetric multistep methods 

Mathematics Subject Classification (2010)

Primary: 65L05 Secondary: 65L06 

Notes

Acknowledgments

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions which improved the presentation of this paper.

References

  1. 1.
    Alolyan, I., Anastassi, Z.A., Simos, T.E.: A new family of symmetric linear four-step methods for the efficient integration of schrödinger equation and related oscilltory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alolyan, I., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the schrödinger equation. Computers & Mathematics with Applications 62(10), 3756–3774 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alolyan, I., Simos, T.E.: High algebraic order methods with vanished phase lag and its first derivative for the numerical solution of the Schr{”odinger equation. J. Math Chem. 48(4), 925–958 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alolyan, I., Simos, T.E.: Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Berg, D.B., Simos, T.E., Tsitouras, Ch.: Trigonometric fitted, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41(5), 1845–1854 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dong, M., Simos, T.E.: A new high algebraic order efficient finite difference method for the solution of the schrödinger equation. Filomat 31(15), 4999–5012 (2017)MathSciNetGoogle Scholar
  7. 7.
    Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1), 1–10 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Medvedev, M.A., Simos, T.E., Tsitouras, Ch.: Explicit, two-stages, sixth-order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x,y)\). Math. Methods Appl. Sci. 41(6), 6997–7006 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Medvedev, M.A., Simos, T.E., Tsitouras, Ch.: Trigonometric fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x,y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Neta, B.: P-stable symmetric super-implicit methods for periodic initial value problems. Comput. Math. Appl. 50(5-6), 701–705 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Neta, B., Fukushima, T.: Obrechkoff versus super-implicit methods for the integration of keplerian orbits. In: Proc. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, August 14-17, 2000, Paper Number AIAA 2000-4029Google Scholar
  13. 13.
    Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. The Astro. J. 100(5), 1694–1700 (1990)Google Scholar
  14. 14.
    Raptis, A.D.: Exponentially-fitted solutions of the eigenvalue shrödinger equation with automatic error control. J. Comput. Phys. Commun. 28, 427–431 (1983)Google Scholar
  15. 15.
    Raptis, A.D., Allison, A.C.: Exponential-fitting methods for the numerical solution of the schrödinger equation. J. Comput. Phys. Commun. 14, 1–5 (1978)Google Scholar
  16. 16.
    Shokri, A.: A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions. Numer. Algor. 77 (1), 95–109 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Shokri, A: The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems. Bull. Iranian Math. Soc. 41, 191–205 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Shokri, A., Mehdizadeh Khalsaraei, M., Tahmourasi, M., Garcia-Rubio, R.: A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag and some of its derivatives for the numerical solution of radial schrödinger equation and IVPs with oscillating solutions. Numer. Algor. 80(2), 557–593 (2018)zbMATHGoogle Scholar
  19. 19.
    Shokri, A., Rahimi Ardabili, M.Y., Shahmorad, S., Hojjati, G.: A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs. J. Comput. Appl. Math. 235, 1706–1712 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shokri, A., Saadat, H.: High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems. Numer. Algor. 68, 337–354 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shokri, A., Saadat, H.: Trigonometrically fitted high-order predictor-corrector method with phase-lag of order infinity for the numerical solution of radial schrödinger equation. J. Math. Chem. 52, 1870–1894 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Shokri, A., Tahmourasi, M.: A new efficient implicit four-step method with vanished phase-lag and its first derivative for the numerical solution of the radial Schrödinger equation. J. Mod Methods Numer. Math. 8(1-2), 77–89 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Shokri, A., Tahmourasi, M.: new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions. Iranian J. Math. Chem. 8(2), 137–159 (2017)zbMATHGoogle Scholar
  24. 24.
    Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new class of two-step P-stable TFPL methods for the numerical solution of second order IVPs with oscillating solutions. J. Comput. Appl. Math. 354, 551–561 (2019)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new four-step P-stable Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial schrödinger equation. J. Comput. Appl. Math. 354, 569–586 (2019)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new implicit six-step P-stable method for the numerical solution of Schrödinger equation, Int. J. Comput. Math.  https://doi.org/10.1080/00207160.2019.1588257(2019)
  27. 27.
    Simos, T.E., Tsitouras, Ch.: A new family of 7 stages, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40(18), 7876–7878 (2017)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Simos, T.E., Tsitouras, Ch.: Evolutionary generation of high-order, explicit, two-step methods for second order linear IVPs. Math. Methods Appl. Sci. 40(18), 6276–6284 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Simos, T.E., Tsitouras, Ch.: High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x,y)\). Appl. Comput. Math. 17(3), 307–316 (2018)MathSciNetGoogle Scholar
  30. 30.
    Simos, T.E., Tsitouras, Ch., Famelis, I.Th.: Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Simos, T.E., Vigo-Aguiar, J.: An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Comput. Phys. Commun. 140(3), 358–365 (2001)zbMATHGoogle Scholar
  32. 32.
    Simos, T.E., Williams, P.S.: A finite-difference meth od for the numerical solution of the schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)MathSciNetGoogle Scholar
  33. 33.
    Steifel, E., Bettis, D.G.: Stabilization of Cowells methods. Numer. Math. 13, 154–175 (1969)MathSciNetGoogle Scholar
  34. 34.
    Tsitouras, Ch., Simos, T.E.: Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr J Math 15, 168 (2018).  https://doi.org/10.1007/s00009-018-1216-7 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Tsitouras, Ch., Simos, T.E.: On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15, 46 (2018).  https://doi.org/10.1007/s00009-018-1089-9 MathSciNetzbMATHGoogle Scholar
  36. 36.
    Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime }=f(x,y,y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Wang, Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Wang, Z., Wang, Y.: A new kind of high efficient and high accurate P-stable Obrechkoff three-step method for periodic initial value problems. Comput. Phys. Commun. 171(2), 79–92 (2005)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang, Z., Zhao, D., Dai, Y., Song, X.: A new high efficient and high accurate Obrechkoff four-step method for the periodic non-linear undamped duffings equation. Comput. Phys. Commun. 165, 110–126 (2005)zbMATHGoogle Scholar
  40. 40.
    Wang, Z., Zhao, D., Dai, Y., Wu, D.: An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial value problems. Proc. R. Soc. 461, 1639–1658 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations