Advertisement

A tangential method for the balanced truncation in model reduction

  • Y. KaouaneEmail author
Original Paper
  • 19 Downloads

Abstract

In this paper, we present a new approach for large-scale Lyapunov matrix equations, where we present two algorithms named: Adaptive Block Tangential Lanczos-type and Arnoldi-type algorithms (ABTL and ABTA). This approach is based on the projection of the initial problem onto tangential Krylov subspaces to produce a low-rank approximate solution of large Lyapunov equations. These approximations are used in model reduction of large-scale dynamical systems with multiple inputs and multiple outputs (MIMO). We give some algebraic properties and present some numerical experiences to show the effectiveness of the proposed algorithms.

Keywords

Balanced truncation Krylov subspaces Lyapunov Model reduction Tangential directions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM Adv. Des. Contr. 29, 181–190 (2005)zbMATHGoogle Scholar
  2. 2.
    Bai, Z.: Krylov subspace techniques for reduced-order modeling of large scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benner, P., Li, J., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bentbib, A.H., Jbilou, K., Kaouane, Y.: A computational global tangential Krylov subspace method for model reduction of large-scale MIMO dynamical systems. J. Sci. Comput. 75, 1614–1632 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Datta, B.N.: Large-scale matrix computations in control. Appl. Numer. Math. 30, 53–63 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Datta, B.N.: Krylov subspace methods for large-scale matrix problems in control. Future Gener. Comput. Syst. 19, 1253–1263 (2003)CrossRefGoogle Scholar
  7. 7.
    Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Contr. Lett. 60, 546–560 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frangos, M., Jaimoukha, I.M.: Adaptive rational interpolation: Arnoldi and Lanczos-like equations. Eur. J. Control. 14, 342–354 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L, \(\infty \)-error bounds. Int. J. Control. 39, 1115–1193 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Glover, K., Limebeer, D.J.N., Doyle, J.C., Kasenally, E.M., Safonov, M.G.: A characterization of all solutions to the four block general distance problem. SIAM J. Control Optim. 29, 283–324 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory University of Illinois at Urbana–Champaign (1997)Google Scholar
  13. 13.
    Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control. 77, 748–766 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heyouni, M., Jbilou, K.: Matrix Krylov subspace methods for large scale model reduction problems. App. Math. Comput. 181, 1215–1228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Matrix Anal. Appl. 31, 227–251 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Automatic Contr. 26, 17–32 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mullis, C.T., Roberts, R.A.: Roundoff noise in digital filters: frequency transformations and invariants. IEEE Trans. Acoust. Speec Signal Process. 24, 538–550 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Penzl, T.: Lyapack matlab toolbox for large Lyapunov and Riccati equations, model reduction problems and linear-quadratic optimal control problems, http://www.tuchemintz.de/sfb393/lyapack
  19. 19.
    Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Automat. Contr. 34, 729–733 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Van Dooren, P., Gallivan, K.A., Absil, P.: H 2-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Pures et AppliquéesUniversité du Littoral, Côte d’OpaleCalaisFrance
  2. 2.Laboratoire de Mathématiques Appliquées et InformatiqueUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations