Construction of new generalizations of Wynn’s epsilon and rho algorithm by solving finite difference equations in the transformation order

  • Xiang-Ke Chang
  • Yi HeEmail author
  • Xing-Biao Hu
  • Jian-Qing Sun
  • Ernst Joachim Weniger
Original Paper


We construct new sequence transformations based on Wynn’s epsilon and rho algorithms. The recursions of the new algorithms include the recursions of Wynn’s epsilon and rho algorithm and of Osada’s generalized rho algorithm as special cases. We demonstrate the performance of our algorithms numerically by applying them to some linearly and logarithmically convergent sequences as well as some divergent series.


Convergence acceleration algorithm Sequence transformation Epsilon algorithm Rho algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

Y. He was supported by the National Natural Science Foundation of China (Grant No. 11571358), the China Postdoctoral Science Foundation funded project (Grant Nos. 2012M510186 and 2013T60761), and the Youth Innovation Promotion Association CAS. X.K. Chang was supported by the National Natural Science Foundation of China (Grant Nos. 11701550, 11731014) and the Youth Innovation Promotion Association CAS. X.B. Hu was supported by the National Natural Science Foundation of China (Grant Nos. 11871336, 11571358). J.Q. Sun was supported by the Fundamental Research Funds for the Central Universities (201964008), and the National Natural Science Foundation of China (Grant Nos. 11401546, 11871444).


  1. 1.
    Aitken, A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. Roy. Soc. Edinburgh. 46, 289–305 (1926)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baker, G.A. Jr., Graves-Morris, P: Padé Approximants. 2nd edn. Cambridge University Press, Cambridge (1996)Google Scholar
  3. 3.
    Barbeau, E.J.: Euler subdues a very obstreperous series. Amer. Math. Monthly. 86, 356–372 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barbeau, E.J., Leah, P.J.: Euler’s 1760 paper on divergent series. Hist. Math. 3, 141–160 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barber, M.N., Hamer, C.J.: Extrapolation of sequences using a generalized epsilon-algorithm. J. Austral. Math. Soc. B 23, 229–240 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bender, C.M., Wu, T.T.: Anharmonic oscillator. Phys. Rev. 184, 1231–1260 (1969)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bender, C.M., Wu, T.T.: Large-order behavior of perturbation theory. Phys. Rev. Lett. 27, 461–465 (1971)CrossRefGoogle Scholar
  8. 8.
    Bender, C.M., Wu, T.T.: Anharmonic oscillator. II. A study in perturbation theory in large order. Phys. Rev. D 7, 1620–1636 (1973)CrossRefGoogle Scholar
  9. 9.
    Bhowmick, S., Bhattacharya, R., Roy, D.: Iterations of convergence accelerating nonlinear transforms. Comput. Phys. Commun. 54, 31–36 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bickley, W.G., Miller, J.C.P.: The numerical summation of slowly convergent series of positive terms. Phil. Mag. 22, 754–767 (1936)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bjørstad, P., Dahlquist, G., Grosse, E.: Extrapolations of asymptotic expansions by a modified Aitken δ 2-formula. BIT 21, 56–65 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borghi, R.: Computational optics through sequence transformations. In: Visser, T D (ed.) Progress in Optics, vol 61, chap 1, pp 1–70. Academic Press, Amsterdam (2016)Google Scholar
  13. 13.
    Borghi, R., Weniger, E.J.: Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Numer. Math. 94, 149–178 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge: a Study in High-Accuracy Numerical Computing. Society of Industrial Applied Mathematics, Philadelphia (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bowman, K.O., Shenton, L.R.: Continued Fractions in Statistical Applications. Marcel Dekker, New York (1989)zbMATHGoogle Scholar
  16. 16.
    Brezinski, C.: Accélération de suites à convergence logarithmique. C. R. Acad. Sci. Paris 273 A, 727–730 (1971a)zbMATHGoogle Scholar
  17. 17.
    Brezinski, C.: Méthodes d’accélération de la convergence en analyse numérique. Thèse d’Etat, Université de Grenoble (1971b)Google Scholar
  18. 18.
    Brezinski, C.: Conditions d’application et de convergence de procédés d’extrapolation. Numer. Math. 20, 64–79 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Brezinski, C.: Accélération de la Convergence en Analyse Numérique. Springer, Berlin (1977)CrossRefzbMATHGoogle Scholar
  20. 20.
    Brezinski, C.: Algorithmes d’Accélération de la Convergence—Étude Numérique. Éditions Technip, Paris (1978)Google Scholar
  21. 21.
    Brezinski, C.: Padé-Type Approximation and General Orthogonal Polynomials. Basel, Birkhäuser (1980)CrossRefzbMATHGoogle Scholar
  22. 22.
    Brezinski, C.: A Bibliography on Continued Fractions, Padé Approximation, Sequence Transformation and Related Subjects. Prensas Universitarias de Zaragoza, Zaragoza (1991a)Google Scholar
  23. 23.
    Brezinski, C.: History of Continued Fractions and Padé Approximants. Springer, Berlin (1991b)CrossRefzbMATHGoogle Scholar
  24. 24.
    Brezinski, C.: Extrapolation algorithms and Padé approximations: a historical survey. Appl. Numer. Math. 20, 299–318 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Brezinski, C.: Convergence Acceleration During the 20th Century. J. Comput. Appl. Math. 122, 1–21 (2000a). Reprinted in: Brezinski C (ed) Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, Elsevier, Amsterdam, pp 1–21MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Brezinski, C.: Some pioneers of extrapolation methods. In: Bultheel, A, Cools, R (eds.) The Birth of Numerical Analysis, pp 1–22. World Scientific, Singapore (2009)Google Scholar
  27. 27.
    Brezinski, C.: Reminiscences of Peter Wynn. Numer. Algor. 80, 5–10 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  29. 29.
    Brezinski, C., Redivo Zaglia, M.: The genesis and early developments of Aitken’s process, Shanks’ transformation, the ε-algorithm, and related fixed point methods. Numer. Algor. 80, 11–133 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Brezinski, C., Redivo Zaglia, M., Weniger, E.J.: Special Issue: approximation and extrapolation of convergent and divergent sequences and series (CIRM, Luminy, France, 2009). Appl. Numer. Math. 60, 1183–1464 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Brezinski, C., He, Y., Hu, X.B., Redivo-Zaglia, M., Sun, J.Q.: Multistep ε-algorithm, Shanks’ transformation, and the Lotka-Volterra system by Hirota’s method. Math. Comput. 81, 1527–1549 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Bromwich, T.J.I.: An Introduction to the Theory of Infinite Series, 3rd edn. Chelsea, New York (1991). originally published by Macmillan (London, 1908 and 1926)zbMATHGoogle Scholar
  33. 33.
    Burkhardt, H.: Über den Gebrauch divergenter Reihen in der Zeit von 1750–1860. Math. Annal. 70, 169–206 (1911)CrossRefzbMATHGoogle Scholar
  34. 34.
    Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A., Jentschura, U.D.: From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. 446, 1–96 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chang, X.K., He, Y., Hu, X.B., Li, S.H.: A new integrable convergence acceleration algorithm for computing Brezinski-Durbin-Redivo-Zaglia’s sequence transformation via pfaffians. Numer. Algor. 78, 87–106 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Čížek, J., Zamastil, J., Skalá, L.: New summation technique for rapidly divergent perturbation series. Hydrogen atom in magnetic field. J. Math. Phys. 44, 962–968 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Cuyt, A., Wuytack, L.: Nonlinear Methods in Numerical Analysis. North-Holland, Amsterdam (1987)zbMATHGoogle Scholar
  38. 38.
    Delahaye, J.P.: Sequence Transformations. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  39. 39.
    Drummond, J.E.: Summing a common type of slowly convergent series of positive terms. J. Austral. Math. Soc. B 19, 416–421 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Dyson, D.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 32–33 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ferraro, G.: The Rise and Development of the Theory of Series up to the Early 1820s. Springer, New York (2008)zbMATHGoogle Scholar
  42. 42.
    Filter, E., Steinborn, E.O.: Extremely compact formulas for molecular one-electron integrals and Coulomb integrals over Slater-type atomic orbitals. Phys. Rev. A 18, 1–11 (1978a)CrossRefGoogle Scholar
  43. 43.
    Filter, E., Steinborn, E.O.: The three-dimensional convolution of reduced Bessel functions and other functions of physical interest. J. Math. Phys. 19, 79–84 (1978b)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Fischer, J.: On the role of power expansions in quantum field theory. Int. J. Mod. Phys. A 12, 3625–3663 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Gil, A., Segura, J., Temme, N.M.: Basic methods for computing special functions. In: Simos, T E (ed.) Recent Advances in Computational and Applied Mathematics, pp 67–121. Springer, Dordrecht (2011)Google Scholar
  47. 47.
    Graves-Morris, P.R., Roberts, D.E., Salam, A.: The epsilon algorithm and related topics. J. Comput. Appl. Math. 122, 51–80 (2000a). Reprinted in: Brezinski C (ed) Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, Elsevier, Amsterdam, pp 51–80MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Grosswald, E.: Bessel Polynomials. Springer, Berlin (1978)CrossRefzbMATHGoogle Scholar
  49. 49.
    Grotendorst, J., Weniger, E.J., Steinborn, E.O.: Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators. Phys. Rev. A 33, 3706–3726 (1986)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)zbMATHGoogle Scholar
  51. 51.
    He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J. Sci. Comput. 33, 1234–1245 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Homeier, H.H.H.: Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 122, 81–147 (2000a). Reprinted in: Brezinski C (ed) Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, Elsevier, Amsterdam, pp 81–147MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Kummer, E.E.: Eine neue Methode, die numerischen Summen langsam convergirender Reihen zu berechnen. J. Reine. Angew. Math. 16, 206–214 (1837)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Le Guillou, J.C., Zinn-Justin J. (eds.): Large-Order Behaviour of Perturbation Theory. North-Holland, Amsterdam (1990)Google Scholar
  55. 55.
    Levin, D.: Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B 3, 371–388 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Liem, C.B., Lü, T., Shih, T.M.: The Splitting Extrapolation Method. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  57. 57.
    Marchuk, G.I., Shaidurov, V.V.: Difference Methods and Their Extrapolations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  58. 58.
    Nagai, A., Satsuma, J.: Discrete soliton equations and convergence acceleration algorithms. Phys. Lett. A 209, 305–312 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). Available online under
  60. 60.
    Osada, N.: A convergence acceleration method for some logarithmically convergent sequences. SIAM J. Numer. Anal. 27, 178–189 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Osada, N.: An acceleration theorem for the ρ algorithm. Numer. Math. 73, 521–531 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Osada, N.: The early history of convergence acceleration methods. Numer. Algor. 60, 205–221 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Padé, H.: Sur la représentation approachée d’une fonction par des fractions rationelles. Ann. Sci. Éc. Norm. Sup. 9, 3–93 (1892)CrossRefzbMATHGoogle Scholar
  64. 64.
    Papageorgiou, V., Grammaticos, B., Ramani, A.: Integrable lattices and convergence acceleration algorithms. Phys. Lett. A 179, 111–115 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. 3rd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  66. 66.
    Sablonniere, P.: Comparison of four algorithms accelerating the convergence of a subset of logarithmic fixed point sequences. Numer. Algor. 1, 177–197 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Schmidt, J.R.: On the numerical solution of linear simultaneous equations by an iterative method. Philos. Mag. 32, 369–383 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Sedogbo, G.A.: Convergence acceleration of some logarithmic sequences. J. Comput. Appl. Math. 32, 253–260 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Shanks, D.: An analogy between transient and mathematical sequences and some nonlinear sequence transforms suggested by it. Part I. Tech. rep., Naval Ordonance Laboratory, White. Oak, memorandum 9994 (1949)Google Scholar
  70. 70.
    Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. (Cambridge Mass.) 34, 1–42 (1955)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Shavitt, I.: The Gaussian function in calculations of statistical mechanics and quantum mechanics. In: Alder, B, Fernbach, S, Rotenberg, M (eds.) Methods in Computational Physics, vol. 2, Quantum Mechanics, pp 1–45. Academic Press, New York (1963)Google Scholar
  72. 72.
    Sidi, A.: A convergence and stability study of the iterated Lubkin transformation and the θ-algorithm. Math. Comput. 72, 419–433 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Sidi, A.: Practical Extrapolation Methods. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  74. 74.
    Smith, D.A., Ford, W.F.: Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal. 16, 223–240 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Smith, D.A., Ford, W.F.: Numerical comparisons of nonlinear convergence accelerators. Math. Comput. 38, 481–499 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Steinborn, E.O., Filter, E.: Translations of fields represented by spherical-harmonic expansions for molecular calculations. III. Translations of reduced Bessel functions, Slater-type s-orbitals, and other functions. Theor. Chim. Acta. 38, 273–281 (1975)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Sun, J.Q., Chang, X.K., He, Y., Hu, X.B.: An extended multistep Shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer. Math. 125, 785–809 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Suslov, I.M.: Divergent perturbation series. J. Exp. Theor. Phys. (JETP) 100, 1188–1234 (2005)CrossRefGoogle Scholar
  79. 79.
    Temme, N.M.: Numerical aspects of special functions. Acta. Numer. 16, 379–478 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Todd, J.: Motivation for working in numerical analysis. In: Todd, J (ed.) Survey of Numerical Analysis, pp 1–26. McGraw-Hill, New York (1962)Google Scholar
  81. 81.
    Todd, J.: The lemniscate constants. Commun. ACM 18, 14–19 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  83. 83.
    Tucciarone J.: The development of the theory of summable divergent series from 1880 to 1925. Arch. Hist. Ex. Sci. 10, 1–40 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Vanden Broeck, J.M., Schwartz, L.W.: A one-parameter family of sequence transformations. SIAM J. Math. Anal. 10, 658–666 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Walz, G.: Asymptotics and Extrapolation. Akademie Verlag, Berlin (1996)zbMATHGoogle Scholar
  86. 86.
    Weniger, E.J.: Untersuchung der Verwendbarkeit reduzierter Besselfunktionen als Basissatz für ab initio Rechnungen an Molekülen. Vergleichende Rechnungen am Beispiel des \(\mathrm {H}_{2}^{+}\). Diplomarbeit, Fachbereich Chemie und Pharmazie, Universität Regensburg (1977)Google Scholar
  87. 87.
    Weniger, E.J.: Reduzierte Bessel-Funktionen als LCAO-Basissatz: Analytische und numerische Untersuchungen. PhD thesis, Fachbereich Chemie und Pharmazie, Universität Regensburg. A. short. abstract. of. this. thesis. was. published. in. Zentralblatt. für. Mathematik. 523,. 444. (1984),. abstract. no. 65015 (1982)Google Scholar
  88. 88.
    Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, vol. 10. Los Alamos Preprint arXiv:math-ph/0306302 (1989)
  89. 89.
    Weniger, E.J.: On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Commun. 64, 19–45 (1991)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Weniger, E.J.: Interpolation between sequence transformations. Numer. Algor. 3, 477–486 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Weniger, E.J.: Verallgemeinerte Summationsprozesse als numerische Hilfsmittel für quantenmechanische und quantenchemische Rechnungen. Habilitation thesis, Fachbereich Chemie und Pharmazie, Universität Regensburg, Los Alamos Preprint arXiv:math-ph/0306048 (1994)
  92. 92.
    Weniger, E.J.: Prediction properties of Aitken’s iterated Δ2 process, of Wynn’s epsilon algorithm, and of Brezinski’s iterated theta algorithm. J. Comput. Appl. Math. 122, 329–356 (2000a). Reprinted in: Brezinski C (ed) Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, Elsevier, Amsterdam, pp 329–356MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Weniger, E.J.: Mathematical properties of a new Levin-type sequence transformation introduced by Čížek, Zamastil, and Skalá. I. Algebraic theory. J. Math. Phys. 45, 1209–1246 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Weniger, E.J.: Further discussion of sequence transformation methods. Subtopic “Related Resources” (R1) on the Numerical Recipes (Third Edition) Webnotes page (2007)
  95. 95.
    Weniger, E.J.: On the analyticity of Laguerre series. J. Phys. A 41, 425,207–1–425,207–43 (2008)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Weniger, E.J.: The strange history of B functions or how theoretical chemists and mathematicians do (not) interact. Int. J. Quantum. Chem. 109, 1706–1716 (2009)CrossRefGoogle Scholar
  97. 97.
    Weniger, E.J.: An introduction to the topics presented at the conference “Approximation and extrapolation of convergent and divergent sequences and series” CIRM Luminy: September 28, 2009–October 2, 2009. Appl. Numer. Math. 60, 1184–1187 (2010)CrossRefGoogle Scholar
  98. 98.
    Weniger, E.J., Kirtman, B.: Extrapolation methods for improving the convergence of oligomer calculations to the infinite chain limit of quasi-onedimensional stereoregular polymers. Comput. Math. Appl. 45, 189–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Weniger, E.J., Steinborn, E.O.: Numerical properties of the convolution theorems of B functions. Phys. Rev. A 28, 2026–2041 (1983)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Wimp, J.: Sequence Transformations and Their Applications. Academic Press, New York (1981)zbMATHGoogle Scholar
  101. 101.
    Wynn, P.: On a device for computing the \(e_{m (S_{n})}\) transformation. Math. Tables. Aids. Comput. 10, 91–96 (1956a)MathSciNetCrossRefGoogle Scholar
  102. 102.
    Wynn, P.: On a Procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Phil. Soc. 52, 663–671 (1956b)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Wynn, P.: A note on programming repeated applications of the ε-algorithm. Rev. Franc. Trait. Inform. Chiffres. 8, 23–62 (1965)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Wynn, P.: On the convergence and the stability of the epsilon algorithm. SIAM J. Numer. Anal. 3, 91–122 (1966)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  4. 4.School of Mathematical SciencesOcean University of ChinaQingdaoPeople’s Republic of China
  5. 5.Institut für Physikalische und Theoretische ChemieUniversität RegensburgRegensburgGermany

Personalised recommendations