On the complex Falk–Langemeyer method

  • Vjeran HariEmail author
Original Paper


A new algorithm for the simultaneous diagonalization of two complex Hermitian matrices is derived. It is a proper generalization of the known Falk–Langemeyer algorithm which was originally derived in 1960 for a pair of positive definite matrices. It is proved that the complex Falk–Langemeyer algorithm is defined for a pair of Hermitian matrices which make a definite pair. Special attention is paid to the stability of the formulas for the transformation parameters in the case when the pivot submatrices are almost proportional. The numerical tests show the high relative accuracy of the method if both matrices are definite and if the condition numbers of DAADA and DBBDB are small for some diagonal matrices DA and DB.


Generalized eigenvalue problem Complex Hermitian matrices Definite matrix pair Diagonalization method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is thankful to the anonymous referees and the editor N. Higham for very insightful comments which helped him improve the paper.


  1. 1.
    Demmel, J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Drmač, Z.: A tangent algorithm for computing the generalized singular value decomposition. SIAM J. Numer. Anal. 35(5), 1804–1832 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Falk, S., Langemeyer, P.: Das Jacobische Rotations-Verfahren für reel symmetrische Matrizen-Paare I, II. Elektronische Datenverarbeitung, pp. 30–43 (1960)Google Scholar
  4. 4.
    Hari, V.: On cyclic Jacobi methods for the positive definite generalized eigenvalue problem. Ph.D.thesis, University of Hagen (1984)Google Scholar
  5. 5.
    Hari, V.: On pairs of almost diagonal matrices. Linear Algebra and Its Appl. 148, 193–223 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hari, V., Drmač, Z: On scaled almost diagonal hermitian matrix pairs. SIAM J. Matrix Anal. Appl. 18(4), 1000–1012 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hari, V.: Convergence to diagonal form of block Jacobi-type methods. Numer. Math. 129(3), 449–481 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hari, V., Begović Kovač, E.: Convergence of the cyclic and quasi-cyclic block Jacobi methods. Electron. T. Numer. Ana. 46, 107–147 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hari, V., Begović Kovač, E.: On the convergence of complex Jacobi methods. arXiv:1810.12720 [math.NA]
  10. 10.
    Hari, V.: Globally convergent Jacobi methods for positive definite matrix pairs. Numer. Algorithms 79(1), 221–249 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Higham, N.J., Tisseur, F., Van Dooren, P.M.: Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351-352, 455–474 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Higham, N.J., Mackey, D.S., Tisseur, F.: Defnite matrix polynomials and their linearization by defnite pencils. SIAM J. Matrix Anal. Appl. 31(2), 478–502 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Matejaš, J.: Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices. SIAM J. Matrix Anal. Appl. 31(1), 133–153 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matejaš, J.: Accuracy of one step of the Falk-Langemeyer method. Numer. Algorithms 68(4), 645–670 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Novaković, V., Singer, S., Singer, S.: Blocking and parallelization of the Hari–Zimmermann variant of the Falk–Langemeyer algorithm for the generalized SVD. Parallel Comput. 49, 136–152 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Parlett, B.N.: Symmetric eigenvalue problem. Prentice Hall Inc., Englewood Cliffs (1980)zbMATHGoogle Scholar
  17. 17.
    de Rijk, P.P.M.: A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer. SIAM J. Sci. Stat. Comp. 10, 359–371 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl. 10(3), 326–346 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Slapničar, I., Hari, V.: On the quadratic convergence of the Falk-Langemeyer method for definite matrix pairs. SIAM J. Matrix Anal. Appl. 12(1), 84–114 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stewart, G.W.: Perturbation bounds for the definite generalized eigenvalue problem. Lin. Alg. and Its Appl. 23, 69–85 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stewart, G.W.: Matrix algorithms, vol II: Eigensystems. SIAM (2001)Google Scholar
  22. 22.
    Stewart, G.W., Sun, J.: Matrix perturbation theory. Academic Press, London (1990)zbMATHGoogle Scholar
  23. 23.
    van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14(1), 14–23 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zimmermann, K.: On the convergence of the Jacobi process for ordinary and generalized eigenvalue problems. Ph.D. Thesis Dissertation, No. 4305 ETH, Zürich (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations