Gating-enhanced IMEX splitting methods for cardiac monodomain simulation
Abstract
The electrical activity in excitable cardiac tissue can be simulated using the so-called monodomain model. The monodomain model is a continuum-based multi-scale model that consists of non-linear ordinary differential equations describing the electrical activity at the cellular scale along with a semi-linear parabolic partial differential equation describing electrical propagation at the tissue scale. The standard “scale-based” splitting method for simulating the monodomain model is to split the tissue and cell models, applying different integrators to each. Typically, the tissue model is simulated with an implicit time-integration method, and the cell model is simulated with an explicit or explicit-exponential one. We demonstrate that the application of implicit-explicit (IMEX) linear multistep or Runge–Kutta methods to this splitting can have poor stability properties when the cell model is stiff. We propose a novel “gating-enhanced” IMEX splitting that treats the tissue variable and the (typically stiff) cell model gating variables together implicitly. The performance of 14 different IMEX methods using both splittings is measured in a variety of one- and two-dimensional experiments. The low incremental overhead combined with the substantially improved stability of the gating-enhanced splitting is shown to result in a performance increase of approximately a factor of four for simulations of the monodomain model with the stiff ten Tusscher–Panfilov model of human endocardial cells.
Keywords
Monodomain model Cardiac electrophysiology Implicit-explicit time-integration methodsPreview
Unable to display preview. Download preview PDF.
Notes
References
- 1.Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. App. Num. Math 25(2-3), 151–167 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Num. Analy 32(3), 797–823 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Auckland Bioengineering Institute: The CellML project., http://www.cellml.org/ (2011)
- 4.Burrage, K., Butcher, J.: Non-linear stability of a general class of differential equation methods. BIT 20, 185–203 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Cervi, J., Spiteri, R.J.: High-order operator splitting for the bidomain and monodomain models. SIAM J. Sci. Comput. 40(2), A769–A786 (2018). https://doi.org/10.1137/17M1137061 MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Cooper, J., Spiteri, R.J., Mirams, G.R.: Cellular cardiac electrophysiology modeling with chaste and cellml. Front. Physiol. 5, 511 (2015). https://doi.org/10.3389/fphys.2014.00511. https://www.frontiersin.org/article/10.3389/fphys.2014.00511 CrossRefGoogle Scholar
- 7.Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503 MathSciNetCrossRefzbMATHGoogle Scholar
- 8.FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J 1(6), 445–466 (1961)CrossRefGoogle Scholar
- 9.Hooke, N., Henriquez, C., Lanzkron, P., Rose, D.: Linear algebraic transformations of the bidomain equations: Implications for numerical methods. Math. Biosci. 120(2), 127–145 (1994). https://doi.org/10.1016/0025-5564(94)90049-3. http://www.sciencedirect.com/science/article/pii/0025556494900493 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Karniadakis, G., Sherwin, S.: Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
- 11.Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science 8(1), 234–241 (1998). https://doi.org/10.1063/1.166300 CrossRefzbMATHGoogle Scholar
- 12.Marsh, M.E., Torabi Ziaratgahi, S., Spiteri, R.J.: The secrets to the success of the rush-larsen method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012). https://doi.org/10.1109/TBME.2012.2205575 CrossRefGoogle Scholar
- 13.Mirin, A.A., Richards, D.F., Glosli, J.N., Draeger, E.W., Chan, B., Fattebert, J.L., Krauss, W.D., Oppelstrup, T., Rice, J.J., Gunnels, J.A., Gurev, V., Kim, C., Magerlein, J., Reumann, M., Wen, H.F.: Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias, pp 2:1–2:11. IEEE Computer Society Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2388999 Google Scholar
- 14.Nektar++: Spetral/hp Element Framework. Users Guide - Version 4.4.1: http://doc.nektar.info/userguide/4.4.1 (2017). [Online; accessed 24-Jan-2019]
- 15.Niederer, S.A., Kerfoot, E., Benson, A.P., Bernabeu, M.O., Bernus, O., Bradley, C., Cherry, E.M., Clayton, R., Fenton, F.H., Garny, A., Heidenreich, E., Land, S., Maleckar, M., Pathmanathan, P., Plank, G., Rodriguez, J.F., Roy, I., Sachse, F.B., Seemann, G., Skavhaug, O., Smith, N.P.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011). https://doi.org/10.1098/rsta.2011.0139 MathSciNetCrossRefGoogle Scholar
- 16.Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6), 3029–3051 (2001). https://doi.org/10.1016/S0006-3495(01)75943-7. http://www.sciencedirect.com/science/article/pii/S0006349501759437 CrossRefGoogle Scholar
- 17.Richardson, L.F.: On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Proc R Soc London A: Math Phys Eng Sci 83(563), 335–336 (1910). https://doi.org/10.1098/rspa.1910.0020. http://rspa.royalsocietypublishing.org/content/83/563/335 CrossRefzbMATHGoogle Scholar
- 18.Spiteri, R.J., Dean, R.C.: Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38(12), 3592–3604 (2010). https://doi.org/10.1007/s10439-010-0100-9 CrossRefGoogle Scholar
- 19.Spiteri, R.J., Torabi Ziaratgahi, S.: Operator splitting for the bidomain model revisited. J. Comput. Appl. Math. 296, 550–563 (2016). https://doi.org/10.1016/j.cam.2015.09.015. http://linkinghub.elsevier.com/retrieve/pii/S0377042715004677 MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Sundnes*, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10), 2546–2548 (2009). https://doi.org/10.1109/TBME.2009.2014739 CrossRefGoogle Scholar
- 21.Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the electrical activity in the heart. Springer-Verlag, Berlin (2006)zbMATHGoogle Scholar
- 22.Tung, L.: A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT (978). Department of Electrical Engineering and Computer ScienceGoogle Scholar
- 23.ten Tusscher, K., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. AJP - Heart and Circulatory Physiology 286(4), 1573–1589 (2004). http://ajpheart.physiology.org/cgi/content/abstract/286/4/H1573 CrossRefGoogle Scholar
- 24.ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006). https://doi.org/10.1152/ajpheart.00109.2006 CrossRefGoogle Scholar
- 25.Vos, P.E.J., Eskilsson, C., Bolis, A., Chun, S., Kirby, R.M., Sherwin, S.J.: A generic framework for time-stepping partial differential equations (pdes): general linear methods, object-oriented implementation and application to fluid problems. Int. J. Compt. Fluid. Dyn. 25(3), 107–125 (2011). https://doi.org/10.1080/10618562.2011.575368 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Vos, P.E.J., Sherwin, S.J., Kirby, M.R.: From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. J. Compt. Phys. 229(13), 5161–5181 (2010). https://doi.org/10.1016/j.jcp.2010.03.031 CrossRefzbMATHGoogle Scholar