A novel approach to rigid spheroid models in viscous flows using operator splitting methods

  • Benjamin TapleyEmail author
  • Elena Celledoni
  • Brynjulf Owren
  • Helge I. Andersson
Original Paper


Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multistep method, and the global error behaves as \(\mathcal {O}(\varepsilon h^{2})\) for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from \(\mathcal {O}(h^{2}/\varepsilon )\) in the perturbed regime to \(\mathcal {O}(h)\) in the stiff regime.


Ordinary differential equations Numerical analysis Splitting methods Multiphase flows Immersed rigid bodies Order reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (no. 691070) as well as the SPIRIT project (no. 231632) under the Research Council of Norway FRIPRO funding scheme. Part of this work was done while visiting the University of Cambridge, UK and La Trobe University, Melbourne, Australia.


  1. 1.
    Alfredsson, P.H., Lundell, F., Sod̈erberg, L.D.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech 43, 195–217 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Marti, I., Windhab, E.J., Fischer, P., Erni, P., Cramer, C.: Continuous flow structuring of anisotropic biopolymer particles. Adv. Colloid Interface Sci. 150, 16–26 (2009)CrossRefGoogle Scholar
  3. 3.
    Prather, K.A., Moffett, R.C.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106, 72–77 (2009)Google Scholar
  4. 4.
    Kessler, J.O., Pedley, T.J.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 13–58 (1992)zbMATHGoogle Scholar
  5. 5.
    Heymsfield, A.J.: Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J. Atmos. Sci. 34, 67–81 (1977)CrossRefGoogle Scholar
  6. 6.
    van Hout, R., Sabban, L.: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42, 67–82 (2011)Google Scholar
  7. 7.
    McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tornberg, A., Gustavsson, K.: A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215, 172–196 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shin, M., Koch, D.L.: Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143–74 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Khayat, R.E., Cox, R.G.: Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435–62 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brenner, H., Cox, R.: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561–595 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cox, R.: The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625–643 (1965)CrossRefGoogle Scholar
  13. 13.
    Brenner, H.: The Stokes resistance of an arbitrary particle IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)CrossRefGoogle Scholar
  14. 14.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 102, 161–179 (1922)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)Google Scholar
  16. 16.
    Zhang, H., Ahmadi, G., Fan, F.G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27, 971–1009 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Challabotla, N.R., Nilsen, C., Andersson, H.I.: On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A. 379, 157–162 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–76 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics Differential. Addison-Wesley, Boston (2001)zbMATHGoogle Scholar
  20. 20.
    Fan, F.G., Ahmadi, G.: Dispersion of ellipsoidal particle in an isotropic pseudo-turbulent flow field. ASME J. Fluids Eng. 117, 154–161 (1995)CrossRefGoogle Scholar
  21. 21.
    Celledoni, E., Fassó, F., Säfström, N., Zanna, A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30(4), 2084–2112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Oberbeck, A.: Ueber stationare flussigkeitsbeweegungen mit berucksichtigung der inneren reibung. Crelle’s J. 81, 80–92 (1876)Google Scholar
  23. 23.
    Meinke, M., Schröder, W., Siewert, C., Kunnen, R.P.J.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 45–56 (2014)CrossRefGoogle Scholar
  24. 24.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Second. Springer, New York (1999)Google Scholar
  25. 25.
    Etheir, C.R., Steinman, D.A.: Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19, 369–375 (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Second. Springer, Berlin (2006)Google Scholar
  29. 29.
    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A. 146, 319–323 (1990)MathSciNetCrossRefGoogle Scholar
  31. 31.
    van Zon, R., Schofield, J.: Numerical implementation of the exact dynamics of free rigid bodies. J. Comput. Phys. 225, 145–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second. Springer, Berlin (1993)Google Scholar
  33. 33.
    Mclachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35(2), 258–268 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80(1), 39–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195, 576–593 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second. Springer, Berlin Heidelberg (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesThe Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Energy and Process EngineeringThe Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations